9 resultados para Face
em Brock University, Canada
Resumo:
This study was a comparative investigation of face-toface (i.e., proximate) and computer-mediated written (i.e., graphic) pre-writing conferences. The participants in this study were advanced English as a second language students. The 2 types of conferences were compared in terms of textual features, participation, and the . degree to which they were on topic. Moreover, drafts written after the 2 types of conferences were compared in terms of textual features, and the degree to which they were related to the conferences. Students produced an equivalent amount of discourse in an equivalent amount of time in the 2 types of conferences. The discourse in graphic conferences displayed greater lexical range, and some evidence suggests that it was less on-topic. Both these results likely occurred because the graphic conferences contained more discourse demonstrating interactive competence. Participation in graphic conferences was found to be as balanced or more balanced among students, and among students and the group leader combined. Overall, the drafts produced after the 2 types of conferences were of equivalent length and topical range, but some evidence suggests that drafts written after proximate conferences were more related to the conferences.
Resumo:
The effects oftwo types of small-group communication, synchronous computer-mediated and face-to-face, on the quantity and quality of verbal output were con^ared. Quantity was deiSned as the number of turns taken per minute, the number of Analysis-of-Speech units (AS-units) produced per minute, and the number ofwords produced per minute. Quality was defined as the number of words produced per AS-unit. In addition, the interaction of gender and type of communication was explored for any differences that existed in the output produced. Questionnaires were also given to participants to determine attitudes toward computer-mediated and face-to-face communication. Thirty intermediate-level students fi-om the Intensive English Language Program (lELP) at Brock University participated in the study, including 15 females and 15 males. Nonparametric tests, including the Wilcoxon matched-pairs test, Mann-Whitney U test, and Friedman test were used to test for significance at the p < .05 level. No significant differences were found in the effects of computer-mediated and face-to-face communication on the output produced during follow-up speaking sessions. However, the quantity and quality of interaction was significantly higher during face-to-face sessions than computer-mediated sessions. No significant differences were found in the output produced by males and females in these 2 conditions. While participants felt that the use of computer-mediated communication may aid in the development of certain language skills, they generally preferred face-to-face communication. These results differed fi-om previous studies that found a greater quantity and quality of output in addition to a greater equality of interaction produced during computer-mediated sessions in comparison to face-to-face sessions (Kern, 1995; Warschauer, 1996).
Resumo:
Adults' expert face recognition is limited to the kinds of faces they encounter on a daily basis (typically upright human faces of the same race). Adults process own-race faces holistically (Le., as a gestalt) and are exquisitely sensitive to small differences among faces in the spacing of features, the shape of individual features and the outline or contour of the face (Maurer, Le Grand, & Mondloch, 2002), however this expertise does not seem to extend to faces from other races. The goal of the current study was to investigate the extent to which the mechanisms that underlie expert face processing of own-race faces extend to other-race faces. Participants from rural Pennsylvania that had minimal exposure to other-race faces were tested on a battery of tasks. They were tested on a memory task, two measures of holistic processing (the composite task and the part/whole task), two measures of spatial and featural processing (the JanelLing task and the scrambledlblurred faces task) and a test of contour processing (JanelLing task) for both own-and other-race faces. No study to date has tested the same participants on all of these tasks. Participants had minimal experience with other-race faces; they had no Chinese family members, friends or had ever traveled to an Asian country. Results from the memory task did not reveal an other-race effect. In the present study, participants also demonstrated holistic processing of both own- and other-race faces on both the composite task and the part/whole task. These findings contradict previous findings that Caucasian adults process own-race faces more holistically than other-race faces. However participants did demonstrate an own-race advantage for processing the spacing among features, consistent with two recent studies that used different manipulations of spacing cues (Hayward et al. 2007; Rhodes et al. 2006). They also demonstrated an other-race effect for the processing of individual features for the Jane/Ling task (a direct measure of featural processing) consistent with previous findings (Rhodes, Hayward, & Winkler, 2006), but not for the scrambled faces task (an indirect measure offeatural processing). There was no own-race advantage for contour processing. Thus, these results lead to the conclusion that individuals may show less sensitivity to the appearance of individual features and the spacing among them in other-race faces, despite processing other-race faces holistically.
Resumo:
The present set of experiments was designed to investigate the organization and refmement of young children's face space. Past research has demonstrated that adults encode individual faces in reference to a distinct face prototype that represents the average of all faces ever encountered. The prototype is not a static abstracted norm but rather a malleable face average that is continuously updated by experience (Valentine, 1991); for example, following prolonged viewing of faces with compressed features (a technique referred to as adaptation), adults rate similarly distorted faces as more normal and more attractive (simple attractiveness aftereffects). Recent studies have shown that adults possess category-specific face prototypes (e.g., based on race, sex). After viewing faces from two categories (e.g., Caucasian/Chinese) that are distorted in opposite directions, adults' attractiveness ratings simultaneously shift in opposite directions (opposing aftereffects). The current series of studies used a child-friendly method to examine whether, like adults, 5- and 8-year-old children show evidence for category-contingent opposing aftereffects. Participants were shown a computerized storybook in which Caucasian and Chinese children's faces were distorted in opposite directions (expanded and compressed). Both before and after adaptation (i.e., reading the storybook), participants judged the normality/attractiveness of a small number of expanded, compressed, and undistorted Caucasian and Chinese faces. The method was first validated by testing adults (Experiment I ) and was then refined in order to test 8- (Experiment 2) and 5-yearold (Experiment 4a) children. Five-year-olds (our youngest age group) were also tested in a simple aftereffects paradigm (Experiment 3) and with male and female faces distorted in opposite directions (Experiment 4b). The current research is the first to demonstrate evidence for simple attractiveness aftereffects in children as young as 5, thereby indicating that similar to adults, 5-year-olds utilize norm-based coding. Furthermore, this research provides evidence for racecontingent opposing aftereffects in both 5- and 8-year-olds; however, the opposing aftereffects demonstrated by 5-year-olds were driven largely by simple aftereffects for Caucasian faces. The lack of simple aftereffects for Chinese faces in 5-year-olds may be reflective of young children's limited experience with other-race faces and suggests that children's face space undergoes a period of increasing differentiation over time with respect to race. Lastly, we found no evidence for sex -contingent opposing aftereffects in 5-year-olds, which suggests that young children do not rely on a fully adult-like face space even for highly salient face categories (i.e., male/female) with which they have comparable levels of experience.
Resumo:
The initial timing of face-specific effects in event-related potentials (ERPs) is a point of contention in face processing research. Although effects during the time of the N170 are robust in the literature, inconsistent effects during the time of the P100 challenge the interpretation of the N170 as being the initial face-specific ERP effect. The interpretation of the early P100 effects are often attributed to low-level differences between face stimuli and a host of other image categories. Research using sophisticated controls for low-level stimulus characteristics (Rousselet, Husk, Bennett, & Sekuler, 2008) report robust face effects starting at around 130 ms following stimulus onset. The present study examines the independent components (ICs) of the P100 and N170 complex in the context of a minimally controlled low-level stimulus set and a clear P100 effect for faces versus houses at the scalp. Results indicate that four ICs account for the ERPs to faces and houses in the first 200ms following stimulus onset. The IC that accounts for the majority of the scalp N170 (icNla) begins dissociating stimulus conditions at approximately 130 ms, closely replicating the scalp results of Rousselet et al. (2008). The scalp effects at the time of the P100 are accounted for by two constituent ICs (icP1a and icP1b). The IC that projects the greatest voltage at the scalp during the P100 (icP1a) shows a face-minus-house effect over the period of the P100 that is less robust than the N 170 effect of icN 1 a when measured as the average of single subject differential activation robustness. The second constituent process of the P100 (icP1b), although projecting a smaller voltage to the scalp than icP1a, shows a more robust effect for the face-minus-house contrast starting prior to 100 ms following stimulus onset. Further, the effect expressed by icP1 b takes the form of a larger negative projection to medial occipital sites for houses over faces partially canceling the larger projection of icP1a, thereby enhancing the face positivity at this time. These findings have three main implications for ERP research on face processing: First, the ICs that constitute the face-minus-house P100 effect are independent from the ICs that constitute the N170 effect. This suggests that the P100 effect and the N170 effect are anatomically independent. Second, the timing of the N170 effect can be recovered from scalp ERPs that have spatio-temporally overlapping effects possibly associated with low-level stimulus characteristics. This unmixing of the EEG signals may reduce the need for highly constrained stimulus sets, a characteristic that is not always desirable for a topic that is highly coupled to ecological validity. Third, by unmixing the constituent processes of the EEG signals new analysis strategies are made available. In particular the exploration of the relationship between cortical processes over the period of the P100 and N170 ERP complex (and beyond) may provide previously unaccessible answers to questions such as: Is the face effect a special relationship between low-level and high-level processes along the visual stream?
Resumo:
Higher education is rapidly trending toward the implementation of online (OL) courses and a blended facilitation style that incorporates both OL and face-to-face (FTF) classes. Though previous studies have explored the benefits and pitfalls of OL and blended learning formats from institutional, teacher, and student perspectives, scant research has examined learning outcomes for OL and FTF courses sharing identical content. This study used an explanatory mixed methods design—including pre- and post-test assessments, a questionnaire, and interviews—to explore similarities and differences in participant and teacher perceptions and outcomes (gain scores and final grades) of OL versus traditional FTF Communications courses, and to examine effects of students’ age and gender on learning preference and performance. Data collection occurred over a 4-month period and involved 183 student and 2 professor participants. The study used an SPSS program for data analysis and created a Microsoft Excel document to record themes derived from the questionnaire and interviews. Quantitative findings suggest there are no significant differences in gain scores, final grades, or other learning outcomes when comparing OL and FTF versions of identical Communications courses; however, qualitative findings indicate differences between facilitation styles based on student and professor perception. The study sheds light on student and faculty perceptions of facilitation styles and suggests areas for potential improvements in FTF- and OL-facilitated courses. The study ultimately recommends that students and faculty should have options when it comes to preferred delivery of course material.
Resumo:
As important social stimuli, faces playa critical role in our lives. Much of our interaction with other people depends on our ability to recognize faces accurately. It has been proposed that face processing consists of different stages and interacts with other systems (Bruce & Young, 1986). At a perceptual level, the initial two stages, namely structural encoding and face recognition, are particularly relevant and are the focus of this dissertation. Event-related potentials (ERPs) are averaged EEG signals time-locked to a particular event (such as the presentation of a face). With their excellent temporal resolution, ERPs can provide important timing information about neural processes. Previous research has identified several ERP components that are especially related to face processing, including the N 170, the P2 and the N250. Their nature with respect to the stages of face processing is still unclear, and is examined in Studies 1 and 2. In Study 1, participants made gender decisions on a large set of female faces interspersed with a few male faces. The ERP responses to facial characteristics of the female faces indicated that the N 170 amplitude from each side of the head was affected by information from eye region and by facial layout: the right N 170 was affected by eye color and by face width, while the left N 170 was affected by eye size and by the relation between the sizes of the top and bottom parts of a face. In contrast, the P100 and the N250 components were largely unaffected by facial characteristics. These results thus provided direct evidence for the link between the N 170 and structural encoding of faces. In Study 2, focusing on the face recognition stage, we manipulated face identity strength by morphing individual faces to an "average" face. Participants performed a face identification task. The effect of face identity strength was found on the late P2 and the N250 components: as identity strength decreased from an individual face to the "average" face, the late P2 increased and the N250 decreased. In contrast, the P100, the N170 and the early P2 components were not affected by face identity strength. These results suggest that face recognition occurs after 200 ms, but not earlier. Finally, because faces are often associated with social information, we investigated in Study 3 how group membership might affect ERP responses to faces. After participants learned in- and out-group memberships of the face stimuli based on arbitrarily assigned nationality and university affiliation, we found that the N170 latency differentiated in-group and out-group faces, taking longer to process the latter. In comparison, without group memberships, there was no difference in N170 latency among the faces. This dissertation provides evidence that at a neural level, structural encoding of faces, indexed by the N170, occurs within 200 ms. Face recognition, indexed by the late P2 and the N250, occurs shortly afterwards between 200 and 300 ms. Social cognitive factors can also influence face processing. The effect is already evident as early as 130-200 ms at the structural encoding stage.
Resumo:
The purpose of this research was to examine the ways in which individuals with mental illness create a life of purpose, satisfaction and meaning. The data supported the identification of four common themes: (1) the power of leisure in activation, (2) the power of leisure in resiliency, (3) the power of leisure in identity and (4) the power of leisure in reducing struggle. Through an exploration of the experience of having a mental illness, this project supports that leisure provides therapeutic benefits that transcend through negative life events. In addition, this project highlights the individual nature of recovery as a process of self-discovery. Through the creation of a visual model, this project provides a benchmark for how a small group of individuals have experienced living well with mental illness. As such, this work brings new thought to the growing body of mental health and leisure studies literature.
Resumo:
Adults code faces in reference to category-specific norms that represent the different face categories encountered in the environment (e.g., race, age). Reliance on such norm-based coding appears to aid recognition, but few studies have examined the development of separable prototypes and the way in which experience influences the refinement of the coding dimensions associated with different face categories. The present dissertation was thus designed to investigate the organization and refinement of face space and the role of experience in shaping sensitivity to its underlying dimensions. In Study 1, I demonstrated that face space is organized with regard to norms that reflect face categories that are both visually and socially distinct. These results provide an indication of the types of category-specific prototypes that can conceivably exist in face space. Study 2 was designed to investigate whether children rely on category-specific prototypes and the extent to which experience facilitates the development of separable norms. I demonstrated that unlike adults and older children, 5-year-olds rely on a relatively undifferentiated face space, even for categories with which they receive ample experience. These results suggest that the dimensions of face space undergo significant refinement throughout childhood; 5 years of experience with a face category is not sufficient to facilitate the development of separable norms. In Studies 3 through 5, I examined how early and continuous exposure to young adult faces may optimize the face processing system for the dimensions of young relative to older adult faces. In Study 3, I found evidence for a young adult bias in attentional allocation among young and older adults. However, whereas young adults showed an own-age recognition advantage, older adults exhibited comparable recognition for young and older faces. These results suggest that despite the significant experience that older adults have with older faces, the early and continuous exposure they received with young faces continues to influence their recognition, perhaps because face space is optimized for young faces. In Studies 4 and 5, I examined whether sensitivity to deviations from the norm is superior for young relative to older adult faces. I used normality/attractiveness judgments as a measure of this sensitivity; to examine whether biases were specific to norm-based coding, I asked participants to discriminate between the same faces. Both young and older adults were more accurate when tested with young relative to older faces—but only when judging normality. Like adults, 3- and 7-year-olds were more accurate in judging the attractiveness of young faces; however, unlike adults, this bias extended to the discrimination task. Thus by 3 years of age children are more sensitive to differences among young relative to older faces, suggesting that young children's perceptual system is more finely tuned for young than older adult faces. Collectively, the results of this dissertation help elucidate the development of category-specific norms and clarify the role of experience in shaping sensitivity to the dimensions of face space.