10 resultados para FREQUENCY DISCRIMINATION
em Brock University, Canada
Resumo:
The frequency and type of agonistic displays involved in male-male encounters should be significantly influenced by the presence of females. Discrete agonistic displays vary in energy expenditure and risk, and therefore should be dependent on available resources. The influence of live females and the scent of females, on the frequency of male agonistic displays was observed in a laboratory terrarium using the field cricket Gryllus bimaculatus. The effect of energy constraints on display frequency was also determined. Half the males were fed a diet high in protein and fet; the other males were fed a lower quality diet, for a 7-11 day period. The frequency of five individual displays and mating frequency were recorded using an Event Recorder and notebook. Each group of males was presented with three experimental conditions, over three days, involving the presence or absence of live females and female scent. The presence of females elicited an increase in all displays except antennation; female scent increased the frequency of antennations, mandible flares and grapples, but to a lesser extent than did live females. The frequency of grapples significantly increased for males fed the high quality diet; however diet did not influence the other displays. The combined influence of diet and condition was significant for mandible flare only. Mating frequency was not influenced by diet. However, the frequency ofthe displays were positively correlated with mating frequency for high quality fed males. Escalated displays involving high costs, such as grapple and mandible flare, increased in frequency when the benefits of winning contests were high in G.bimaculatus. Escalation to grapple behaviour was less evident for males fed the lower quality diet as this imposed energy constraints on high cost displays.
Resumo:
There is much evidence to support an age-related decline in source memory ability. However, the underlying mechanisms responsible for this decline are not well understood. The current study was carried out to determine the electrophysiological correlates of source memory discrimination in younger and older adults. Event-related potentials (ERPs) and continuous electrocardiographic (ECG) data were collected from younger (M= 21 years) and older (M= 71 years) adults during a source memory task. Older adults were more likely to make source memory errors for recently repeated, non-target words than were younger adults. Moreover, their ERP records for correct trials showed an increased amplitude in the late positive (LP) component (400-800 msec) for the most recently presented, non-target stimuli relative to the LP noted for target items. Younger adults showed an opposite pattern, with a large LP component for target items, and a much smaller LP component for the recently repeated non-target items. Computation of parasympathetic activity in the vagus nerve was performed on the ECG data (Porges, 1985). The resulting measure, vagal tone, was used as an index of physiological responsivity. The vagal tone index of physiological responsivity was negatively related to the LP amplitude for the most recently repeated, non-target words in both groups, after accounting for age effects. The ERP data support the hypothesis that the tendency to make source memory errors on the part of older adults is related to the ability to selectively control attentional processes during task performance. Furthermore, the relationship between vagal tone and ERP reactivity suggests that there is a physiological basis to the heightened reactivity measured in the LP response to recently repeated non-target items such that, under decreased physiological resources, there is an impairment in the ability to selectively inhibit bottom-up, stimulus based properties in favour of task-related goals in older adults. The inconsistency of these results with other explanatory models of source memory deficits is discussed. It is concluded that the data are consistent with a physiological reactivity model requiring inhibition of reactivity to irrelevant, but perceptually-fluent, stimuli.
Resumo:
Reduced capacity for executive cognitive function and for the autonomic control of cardiac responsivity are both concomitants of the aging process. These may be linked through their mutual dependence on medial prefrontal function, but the specifics ofthat linkage have not been well explored. Executive functions associated with medial prefrontal cortex involve various aspects ofperformance monitoring, whereas centrally mediated autonomic functions can be observed as heart rate variability (HRV), i.e., variability in the length of intervals between heart beats. The focus for this thesis was to examine the degree to which the capacity for phasic autonomic adjustments to heart rate relates to performance monitoring in younger and older adults, using measures of electrocortical and autonomic activity. Behavioural performance and attention allocation during two age-sensitive tasks could be predicted by various aspects of autonomic control. For young adults, greater influence of the parasympathetic system on HRV was beneficial for learning unfamiliar maze paths; for older adults, greater sympathetic influence was detrimental to these functions. Further, these relationships were primarily evoked when the task required the construction and use of internalized representations of mazes rather than passive responses to feedback. When memory for source was required, older adults made three times as many source errors as young adults. However, greater parasympathetic influence on HRV in the older group was conducive to avoiding source errors and to reduced electrocortical responses to irrelevant information. Higher sympathetic predominance, in contrast, was associated with higher rates of source error and greater electrocortical responses tq non-target information in both groups. These relations were not seen for 11 errors associated with a speeded perceptual task, irrespective of its difficulty level. Overall, autonomic modulation of cardiac activity was associated with higher levels of performance monitoring, but differentially across tasks and age groups. With respect to age, those older adults who had maintained higher levels of autonomic cardiac regulation appeared to have also maintained higher levels of executive control over task performance.
Resumo:
The EEG of the sleep onset period of psychophysiological insomniacs, psychiatric insomniacs and controls was compared using power spectral analysis (FFT). Eighteen drug-free subjects were equally divided into three groups according to their responses in the Brock Sleep and Insomnia Questionnaire, the Minnesota Multiphasic Personality Inventory and the Sleep Disorders Questionnaire. Group 1 consisted of psychophysiological insomniacs, group 2 included insomniacs with an indication of psychiatric disturbances, and group 3 was a control group. EEG, EOG and EMG were recorded for two consecutive nights. Power spectral analysis (FFT) of EEG at C4 from the sleep onset period (defined as lights out to the first five minutes of stage 2) was performed on all standard frequency bands, delta: .5-4 Hz; theta: 4-8 Hz; alpha: 8-12 Hz; sigma: 12-15 Hz beta: 15-25 Hz. Psychophysiological insomniacs had less alpha during wakefulness than the other two groups and did not show the dramatic drop in alpha across the sleep onset period, which characterizes normal sleep. They also had less delta, especially during stage 2 on night 2. They also showed less delta in the last quartile of the chronological analysis of the sleep onset period. Psychiatric insomniacs showed lower relative beta power values overall while psychophysiological insomniacs showed higher relative beta power values during wakefulness. This microanalysis 11 confirms that the sleep onset period is generally similar for psychiatric insomniacs and normal sleepers. This may be due to the sample of psychiatric insomniacs being heterogeneous or may reflect a sleep onset system that is essentially intact. Psychophysiological insomniacs have higher cortical arousal during the sleep onset period than do the psychiatric insomniacs and the controls. Clear differences in the sleep onset period of psychophysiological insomniacs exist. The dramatic changes in power values in these two groups are not seen in the psychophysiological insomniacs, which may make the discrimination between wakefulness and sleep more difficult.
Resumo:
Raman scattering in the region 20 to 100 cm -1 for fused quartz, "pyrex" boro-silicate glass, and soft soda-lime silicate glass was investigated. The Raman spectra for the fused quartz and the pyrex glass were obtained at room temperature using the 488 nm exciting line of a Coherent Radiation argon-ion laser at powers up to 550 mW. For the soft soda-lime glass the 514.5 nm exciting line at powers up to 660 mW was used because of a weak fluorescence which masked the Stokes Raman spectrum. In addition it is demonstrated that the low-frequency Raman coupling constant can be described by a model proposed by Martin and Brenig (MB). By fitting the predicted spectra based on the model with a Gaussian, Poisson, and Lorentzian forms of the correlation function, the structural correlation radius (SCR) was determined for each glass. It was found that to achieve the best possible fit· from each of the three correlation functions a value of the SCR between 0.80 and 0.90 nm was required for both quartz and pyrex glass but for the soft soda-lime silicate glass the required value of the SCR. was between 0.50 and 0.60 nm .. Our results support the claim of Malinovsky and Sokolov (1986) that the MB model based on a Poisson correlation function provides a universal fit to the experimental VH (vertical and horizontal polarizations) spectrum for any glass regardless of its chemical composition. The only deficiency of the MB model is its failure to fit the experimental depolarization spectra.
Resumo:
Sediment samples were taken from seven locations in the
WeIland River in December 1986 and April 1987. The DMSO extracts
of these sediment samples showed a significant (p
Resumo:
A. strain of Drosophila melanog-aster deficient in null amylase activity (Amylase ) was isolated from a wild null population of flies. The survivorship of Amylase homozygous flies is very low when the principal dietary carbohydrate source is starch. However, the survivorship of the null Amylase genotype is comparable to the wild type when the dietary starch is replaced by glucose. In addition, the null viability of the amylase-producing and Amylase strains is comparable v and very lm<] f on a medium with no carbohydrates . Furthermore, amylase-producing genotypes were shovm to excrete enzymatically active amylase protein into the food medium. The excreted amylase causes the external breakdown of dietary starch to sugar. These results led to the following null prediction: the viability of the A.mvlase genotype (fed on a starch rich diet) might increase in the presence of individuals which were amylase-producing. It was shown experimentally that such an increase in viability did in fact occur and that this increase v\Tas proportional to the number of mnylase..::producing fli.es present. These results provide a unique example of a non-"competi ti ve inter-genotype interaction, and one where the underlying physio~ logical and biochemical mechanism has been fully understood.
Resumo:
We assess the predictive ability of three VPIN metrics on the basis of two highly volatile market events of China, and examine the association between VPIN and toxic-induced volatility through conditional probability analysis and multiple regression. We examine the dynamic relationship on VPIN and high-frequency liquidity using Vector Auto-Regression models, Granger Causality tests, and impulse response analysis. Our results suggest that Bulk Volume VPIN has the best risk-warning effect among major VPIN metrics. VPIN has a positive association with market volatility induced by toxic information flow. Most importantly, we document a positive feedback effect between VPIN and high-frequency liquidity, where a negative liquidity shock boosts up VPIN, which, in turn, leads to further liquidity drain. Our study provides empirical evidence that reflects an intrinsic game between informed traders and market makers when facing toxic information in the high-frequency trading world.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.