2 resultados para FLUORIDE CONCENTRATIONS
em Brock University, Canada
Resumo:
Several automated reversed-phase HPLC methods have been developed to determine trace concentrations of carbamate pesticides (which are of concern in Ontario environmental samples) in water by utilizing two solid sorbent extraction techniques. One of the methods is known as on-line pre-concentration'. This technique involves passing 100 milliliters of sample water through a 3 cm pre-column, packed with 5 micron ODS sorbent, at flow rates varying from 5-10 mUmin. By the use of a valve apparatus, the HPLC system is then switched to a gradient mobile phase program consisting of acetonitrile and water. The analytes, Propoxur, Carbofuran, Carbaryl, Propham, Captan, Chloropropham, Barban, and Butylate, which are pre-concentrated on the pre-column, are eluted and separated on a 25 cm C-8 analytical column and determined by UV absorption at 220 nm. The total analytical time is 60 minutes, and the pre-column can be used repeatedly for the analysis of as many as thirty samples. The method is highly sensitive as 100 percent of the analytes present in the sample can be injected into the HPLC. No breakthrough of any of the analytes was observed and the minimum detectable concentrations range from 10 to 480 ng/L. The developed method is totally automated for the analysis of one sample. When the above mobile phase is modified with a buffer solution, Aminocarb, Benomyl, and its degradation product, MBC, can also be detected along with the above pesticides with baseline resolution for all of the analytes. The method can also be easily modified to determine Benomyl and MBC both as solute and as particulate matter. By using a commercially available solid phase extraction cartridge, in lieu of a pre-column, for the extraction and concentration of analytes, a completely automated method has been developed with the aid of the Waters Millilab Workstation. Sample water is loaded at 10 mL/min through a cartridge and the concentrated analytes are eluted from the sorbent with acetonitrile. The resulting eluate is blown-down under nitrogen, made up to volume with water, and injected into the HPLC. The total analytical time is 90 minutes. Fifty percent of the analytes present in the sample can be injected into the HPLC, and recoveries for the above eight pesticides ranged from 84 to 93 percent. The minimum detectable concentrations range from 20 to 960 ng/L. The developed method is totally automated for the analysis of up to thirty consecutive samples. The method has proven to be applicable to both purer water samples as well as untreated lake water samples.
Resumo:
Systems such as MF/diol (M = alkali metal) and }1F/carboxylic acid were subjected to IH, I9F and 13C nmr study to investigate the nature of the very strong H-bonding of fluoride ions with these systems. Evidence indicates a strong H-bond in diol-fluoride systems (~H ~ -(56) kJ mol-I) which is stronger than most 'typical' H-bonds (~H = -(12-40) kJ mol-I), but weaker than that reported for carboxylic acid-fluoride systems (~H ~ -(120) kJ mol-I). Approximate fluoride H-bonded shifts (o(OH)OHF) were evaluated for MF/diol systems from IH chemical shift measurements. No direct correlation was observed between I9F chemical shift and H-bond strength. Thermodynamic parameters were calculated from temperature dependent IH and 19F shifts. Preliminary studies of BUn 4NF-acetylacetone by I9F nmr were conducted at low temperatures and a possible Jmax (ca. 400 Hz) is reported for the fluoride ion H-bonded to acetylacetone. Highfield shift for non-protonated carbons and downfield shift for protonated carbons were observed in carboxylic acid/KF systems. Significant decreas$in I3C TI due to strong H-bonding to fluoride ions were also detected in both diol and carboxylic acid systems. Anomalous results were obtained, such as increasing NOE with increasing temperature in neat 1,2-ethanediol (values above the theoretical maximum of 1.988) and in 1,2-ethanediol/KF. The large 13C NOE's for carboxy carbons in neat carboxylic acids which are. further enhanced by the addition of KF are also unusual.