10 resultados para FLUORESCENT AROMATIC COMPOUNDS
em Brock University, Canada
Resumo:
Incubations of several polycyclic heteroaromatic compounds and two polycyclic aromatic hydrocarbons with a series of common fungi have been performed. The fungi Cunninghamella elegans ATCC 26269, Rhizopus arrhizus ATCC 11145, and Mortierella isabellina NRRL 1757 were studied in this regard. Of the aza heteroaromatics, only dibenzopyrrole gave a ring hydroxylated product following the incubation with C. elegans. From the thio heteroaromatics studied, dibenzothiophene was metabolized by all the three fungi and thioxanthone by C. elegans and M. isabellina giving sulfones and sulphoxides. Thiochromanone was metabolized stereoselectively to the corresponding sulphoxide by C. elegans. Methyl substituted thioxanthones on incubation with C. elegans produced oxidative products, arising from S -oxidation and hydroxylation at the methyl group. Of the cyclic ketones studied, only fluorenone was reduced to hydroxyfluorene and this metabolism is compared with that reported with cytochrome P-450 monooxygenases of hepatic microsomes. A series of para-substituted ethylbenzenes has been transformed stereoselectively to the 1-phenylethanols by incubation with M. isabellina. Comparisons of the enantiomeric purities obtained from products with their respective para substituent of the same steric size but different electronic properties indicate that the stereoselectivity of hydroxylation at benzylic carbon may be susceptible to electron donating or withdrawing factors in some cases, but that observation is not va lid in all the comparisons. The stereochemistry of the reaction is discussed in terms of three possible steps, ethylbenzene ---) 1-phenylethanol ---) acetophenone ---) 1-phenylethanol. This metabolic pathway could account for the inconsistencies observed in the comparisons of optical purities and electronic character of para substituents. Furthermore, formation of 2-phenylethanol (in some cases), l-(p-acetylphenyl)ethanol from p-diethylbenzene, and N-acetylation of p-ethylaniline was observed. n-Propylbenzene was also converted to optically active 1-phenylpropanol. Acetophenone, p-ethylacetophenone, and o(,~,~-trifluoroacetophenone were transformed to 1-phenylethanol, l-(p-ethylphenyl)ethanol, and 1-phenyl-2,2,2-trifluoroethanol, respectively, with high chemical and excellent optical yields. The 13 C NMR spectra of several substrates and metabolic products have been reported and assigned for the first time.
Resumo:
This work contains the results of a series of reduction studies on polyhalogenated aromatic compounds and related ethers using alkali metals in liquid ammonia. In general, polychlorobenzenes were reduced to t he parent aromatic hydrocarbon or to 1 ,4-cyc1ohexadiene, and dipheny1ethers were cleaved to the aroma tic hydrocarbon and a phenol. Chlorinated dipheny1ethers were r eductive1y dechlorinated in the process. For example, 4-chlorodipheny1- ether gave benzene and phenol. Pentach1orobenzene and certain tetrachlorobenzenes disproportionated to a fair degree during the reduction process if no added proton source was present. The disproportionation was attributed to a build-up of amide ion. Addition of ethanol completely suppressed the formation of any disproportionation products. In the reductions of certain dipheny1ethers , the reduction of one or both of the dipheny1ether rings occurred, along with the normal cleavage. This was more prevalent when lithium was the metal used . As a Sidelight, certain chloropheno1s were readily dechlorinated. In light of these results, the reductive detoxification of the chlorinated dibenzo-1,4-dioxins seems possible with alkali metals in l iquid ammonia.
Resumo:
The Introducti on deals mainly with hi storical studies on aryne chemi stry and ring closure via arynes , hydride replacement from aromatic rings by nucleophi les, c l eavage of anthr aquinones in basic medium and the Leuckart reaction . This work can be divided into two main s ect i ons. Section I is concerned with the investigation of t he reaction of some aromatic ni t ro-compounds with potassamide in l iquid ammonia. 3-Amino-4- nitrobenzophenone was obtained from the reacti on of 4-nitrobenzophenone with t his reagent, toge t her with benzoic acid formed in a competing Haller-Bauer reaction. Nitrobenzene under these conditions gave a complex mixture from which 2-phenylphenol was isolated; a reaction i nvolving benzyne may be i nvo l ved. 4-Nitrodiphenyl sulfone gave 4-aminodiphenyl sulfone and 4-nitroani l ine. 4-Ethoxydiphenyl sulfone and 4-ethoxynitrobenzene were isolated when ethanol was used as a co-solvent in the reaction. Oxidative coupling reactions were observed with nitrotoluenes. 4-Nitrotoluene gave 4,4t-dinitrobibenzyl which i n a pro longed reaction gave 4,4t-dinitros t ilbene . 2-Nitrotoluene gave 2 , 2 t-dinitrobibenzyl, but not the corresponding stilbene derivative even after a longer time . A rather i nteresting result was obtained with 1-nitro-2,4,6- trimethylbenzene which gave a stilbene derivative only. Also the corresponding stilbene was obtained from bis-(4-nitrophenyl)-methane in a rather slow r eaction with this reagent . Section II deals wi th (i) the preparation of 5-chloro- 1-N-methyl aminoanthraquinone and a new synthesis of N-methyl acridones and (ii) treatment of chloro-anthraquinones with fo rmamide and a new synthesis of chloro-anthracenes . 5-Chloro-1 -N-methylaminoanthraqui none was synthesised f rom 1,5-dichloroanthraquinone by treatment with N-methylformamide. Treatment of 5-chloro-1-N-methylaminoanthraquinone with potassamide in liquid ammonia or with potassium t-butoxide i n t-butylbenzene gave N-methylacridone-1-carboxylic acid. This pleasing result, t he outcome of r i ng opening and alter native ring closure, is being extended to related ring systems.
Resumo:
The present studies describe, as a primary goal, our recent progess toward the synthesis of morphine alkaloids from aromatic precursors. Model substrates were synthesized which allowed investigation into Diels-Alder, radical cascade, and palladium-catalyzed bond-forming reactions as possible routes to the morphine alkaloid skeleton. As a secondary objective, three separate series of aromatic substrates were subjected to whole-cell oxidation with Escherichia coli JM 109 (pDTG601), a recombinant organism over-expressing the enzyme toluene dioxygenase. Included in this study were bromothioanisoles, dibromobenzenes, and cyclopropylbenzene derivatives. The products of oxidation were characterized by chemical conversion to known intermediates. The synthetic utility of one of these bacterial metabolites, derived from oxidation of o-dibromobenezene, was demonstrated by chemical conversion to (-)conduritol E.
Resumo:
This thesis describes syntheses and catalytic reactivity of several half-sandwich complexes of ruthenium. The neutral ruthenium trihydride complex, Cp(PPri3)RuH3(1), can efficiently catalyse the H/D exchange reaction between various organic substrates and deuterium sources, such as benzene-d6. Moreover, the H/D exchange reactions of polar substrates were also observed in D2O, which is the most attractive deuterium source due to its low cost and low toxicity. Importantly, the H/D exchange under catalytic conditions was achieved not only in aromatic compounds but also in substituted liphatic compounds. Interestingly, in the case of alkanes and alkyl chains, highly selective deuterium incorporation in the terminal methyl positions was observed. It was discovered that the methylene units are engaged in exchange only if the molecule contains a donating functional group, such as O-and N-donors, C=C double bonds, arenes and CH3. The cationic half-sandwich ruthenium complex [Cp(PPri3)Ru(CH3CN)2]+(2) catalyses the chemoselective mono-addition of HSiMe2Ph to pyridine derivatives to selectively give the 1,4-regiospecific, N-silylated products. An ionic hydrosilylation mechanismis suggested based on the experiments. To support this mechanistic proposal, kinetic studies under catalytic conditions were performed. Also, the 1,4-regioselective mono-hydrosilylation of nitrogen containing compounds such as phenanthroline, quinoline and acridine can be achieved with the related Cp*complex [Cp*(phen)Ru(CH3CN)]+(3) (phen = 1,10-phenanthroline) and HSiMe2Ph under mild conditions. The cationic ruthenium complex 2 can also be used as an efficient catalyst for transfer hydrogenation of various organic substrates including carbonyls, imines, nitriles and esters. Secondary alcohols, amines, N-isopropylidene amines and ether compounds can be obtained in moderate to high yields. In addition, other ruthenium complexes, 1,3 and [Cp*(PPri3)Ru(CH3CN)2]+(4), can catalyse transfer hydrogenation of carbonyls although the reactions were sluggish compared to the ones of 2. The possible intermediate, Cp(PPri3)Ru(CH3CN)(H), was characterized by NMR at low temperature and the kinetic studies for the transfer hydrogenation of acetophenone were performed. Recently, chemoselective reduction of acid chlorides to aldehydes catalysed by the complex 2 was reported. To extend the catalytic reactivity of 2, reduction of iminoyl chlorides, which can be readily obtained from secondary amides, to the corresponding imines and aldehydes was investigated. Various substituted iminoyl chlorides were converted into the imines and aldehydes under mild conditions and several products were isolated with moderate yields.
Resumo:
Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
The general solution behaviour and" the major fragmentation pathways of the anticanceractive PtIV coordination complexes, trans, trans, cis, cis-[PtCIOH{N(pFC6F4) CH2h(pY)2] (1), trans, cis, cis-[Pt(OH)2{N(p-FC6F4)CH2h(Py)2] (2), trans, cis, cis-[Pt(OH)2{N(p-HC6F4)CH2h(Py)2] (3), trans, trans, cis, cis-[PtCIOH{N(pHC6F4) CH2h(Py)2] (4), and trans, trans, cis, cis-[PtOH(OCH3){N(p-HC6F4)CH2h(PY)2] (5) (Py = pyridine) have been deduced by positive-ion tandem-in-time ESI-MS. Overall, the acquired full-scan, positive-ion ESI-MS spectra of 2, 3, and 5 were characterized by the presence of relatively low-intensity [M+Nar and [M+Kt mass spectral peaks, whereas those of 1 and 4 were dominated by extremely intense [M+Hr peaks. Complexes 2 and 3 were also noted to form [2M+Ht and [2M+Nat dilneric cations. The source of Na + and K+ ions is believed to be the sample, the solvent systems used or the transport line carrying the sample solutions into the ES ion source. Further, the fragmentation pathway of all complexes studied was found to be almost identical with concurrent loss of py and H20 molecules, loss of a {N(p-YC6F4)CH2} (Y = F, H) group and/or concomitant release of the latter group and a py ligand being the most conunon. The photochemical degradation behaviour of 1 and 2 was also investigated using either fluorescent or ultraviolet light and some products of that degradation were positively identified. Altogether, light irradiation of solutions of both complexes resulted in cation cationisation, reductive-elimination, ligand-release, ligand-exchange and ligand-addition reactions. Finally, positive- and negative-ion ESI-MSn spectra of 5' -GMP, guanosine, inosine and products of their reactions with 1, 2,3, and 4 were also recorded. On the whole, full-scan ESI-MS spectra of the pure nucleobases revealed the presence of cationic and anionic species that are highly reflective of both their solution ionic composition and their propensity t9 form polymeric clusters. Analyses of mass spectra acquired from their reaction solutions with the aforementioned platinum complexes indicated very slow kinetics. However, all complexes investigated formed, to various degrees, Pt-nucleobase adducts with guanosine and inosine, but not with 5'-GMP. The products included species having coordination numbers of III, IV, V, and VI, among which the first-time· observed, coordinatively saturated, jive-coordinate PtlI-nucleobase complexes were of most interest. The latter complexes are presumably stabilized by 7tback- donation involving the filled d orbitals of the PtII centre and the empty pz· orbital of MeCN. All products, whose peaks appeared inlull-scan ESI-MS spectra, are believed to represent solution species rather than artifacts of gas-phase processes. Finally, negativeion ESI-MSn spectra recorded in reaction solutions of 1 and 4 with guanosine and of the latter complex with inosine revealed the negative-ion-ESI-MS first-time observed, noncovalent, nucleoside-chloride adducts, with the source of chloride anion being complexes 1 and 4 theillselves. In contrast, no such adducts were observed to form with Na25'-GMP or its protonated fonn. Few suggestions are offered for the possible cause(s) behind the absence of such adduct ions.
Resumo:
(A) Most azobenzene-based photoswitches require UV light for photoisomerization, which limit their applications in biological systems due to possible photodamage. Cyclic azobenzene derivatives, on the other hand, can undergo cis-trans isomerization when exposed to visible light. A shortened synthetic scheme was developed for the preparation of a building block containing cyclic azobenzene and D-threoninol (cAB-Thr). trans-Cyclic azobenzene was found to thermally isomerize back to the cis-form in a temperature-dependent manner. cAB-Thr was transformed into the corresponding phosphoramidite and subsequently incorporated into oligonucleotides by solid phase synthesis. Melting temperature measurement suggested that incorporation of cis-cAB into oligonucleotides destabilizes DNA duplexes, these findings corroborate with circular dichroism measurement. Finally, Fluorescent Energy Resonance Transfer experiments indicated that trans-cAB can be accommodated in DNA duplexes. (B) Inverse Electron Demand Diels-Alder reactions (IEDDA) between trans-olefins and tetrazines provide a powerful alternative to existing ligation chemistries due to its fast reaction rate, bioorthogonality and mutual orthogonality with other click reactions. In this project, an attempt was pursued to synthesize trans-cyclooctene building blocks for oligonucleotide labeling by reacting with BODIPY-tetrazine. Rel-(1R-4E-pR)-cyclooct-4-enol and rel-(1R,8S,9S,4E)-Bicyclo[6.1.0]non-4-ene-9-ylmethanol were synthesized and then transformed into the corresponding propargyl ether. Subsequent Sonogashira reactions between these propargylated compounds with DMT-protected 5-iododeoxyuridine failed to give the desired products. Finally a methodology was pursued for the synthesis of BODIPY-tetrazine conjugates that will be used in future IEDDA reactions with trans-cyclooctene modified oligonucleotides.
Resumo:
The employment of the bridging/chelating Schiff bases, N-salicylidene-4-methyl-o-aminophenol (samphH2) and N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in nickel cluster chemistry has afforded eight polynuclear Ni(II) complexes with new structural motifs, interesting magnetic and optical properties, and unexpected organic ligand transformations. In the present thesis, Chapter 1 deals with all the fundamental aspects of polynuclear metal complexes, molecular magnetism and optics, while research results are reported in Chapters 2 and 3. In the first project (Chapter 2), I investigated the coordination chemistry of the organic chelating/bridging ligand, N-salicylidene-4-methyl-o-aminophenol (samphH2). The general NiII/tBuCO2-/samphH2 reaction system afforded two new tetranuclear NiII clusters, namely [Ni4(samph)4(EtOH)4] (1) and [Ni4(samph)4(DMF)2] (2), with different structural motifs. Complex 1 possessed a cubane core while in complex 2 the four NiII ions were located at the four vertices of a defective dicubane. The nature of the organic solvent was found to be of pivotal importance, leading to compounds with the same nuclearity, but different structural topologies and magnetic properties. The second project, the results of which are summarized in Chapter 3, included the systematic study of a new optically-active Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in NiII cluster chemistry. Various reactions between NiX2 (X- = inorganic anions) and nacbH2 were performed under basic conditions to yield six new polynuclear NiII complexes, namely (NHEt3)[Ni12(nacb)12(H2O)4](ClO4) (3), (NHEt3)2[Ni5(nacb)4(L)(LH)2(MeOH)] (4), [Ni5(OH)2(nacb)4(DMF)4] (5), [Ni5(OMe)Cl(nacb)4(MeOH)3(MeCN)] (6), (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] (7), and [Ni6(nacb)6(H2O)3(MeOH)6] (8). The nature of the solvent, the inorganic anion, X-, and the organic base were all found to be of critical importance, leading to products with different structural topologies and nuclearities (i.e., {Ni5}, {Ni6} and {Ni12}). Magnetic studies on all synthesized complexes revealed an overall ferromagnetic behavior for complexes 4 and 8, with the remaining complexes being dominated by antiferromagnetic exchange interactions. In order to assess the optical efficiency of the organic ligand when bound to the metal centers, photoluminescence studies were performed on all synthesized compounds. Complexes 4 and 5 show strong emission in the visible region of the electromagnetic spectrum. Finally, the ligand nacbH2 allowed for some unexpected organic transformations to occur; for instance, the pentanuclear compound 5 comprises both nacb2- groups and a new organic chelate, namely the anion of 5-chloro-2-[(3-hydroxy-4-oxo-1,4-dihydronaphthalen-1-yl)amino]benzoic acid. In the last section of this thesis, an attempt to compare the NiII cluster chemistry of the N-naphthalidene-2-amino-5-chlorobenzoic acid ligand with that of the structurally similar but less bulky, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was made.