7 resultados para Evolutionary algorithm, Parameter identification, rolling element bearings, Genetic algorithm
em Brock University, Canada
Resumo:
Retrotransposons, which used to be considered as “junk DNA”, have begun to reveal their immense value to genome evolution and human biology due to recent studies. They consist of at least ~45% of the human genome and are more or less the same in other mammalian genomes. Retrotransposon elements (REs) are known to affect the human genome through many different mechanisms, such as generating insertion mutations, genomic instability, and alteration in gene expression. Previous studies have suggested several RE subfamilies, such as Alu, L1, SVA and LTR, are currently active in the human genome, and they are an important source of genetic diversity between human and other primates, as well as among humans. Although several groups had used Retrotransposon Insertion Polymorphisms (RIPs) as markers in studying primate evolutionary history, no study specifically focused on identifying Human-Specific Retrotransposon Element (HS-RE) and their roles in human genome evolution. In this study, by computationally comparing the human genome to 4 primate genomes, we identified a total of 18,860 HS-REs, among which are 11,664 Alus, 4,887 L1s, 1,526 SVAs and 783 LTRs (222 full length entries), representing the largest and most comprehensive list of HS-REs generated to date. Together, these HS-REs contributed a total of 14.2Mb sequence increase from the inserted REs and Target Site Duplications (TSDs), 71.6Kb increase from transductions, and 268.2 Kb sequence deletion of from insertion-mediated deletion, leading to a net increase of ~14 Mb sequences to the human genome. Furthermore, we observed for the first time that Y chromosome might be a hot target for new retrotransposon insertions in general and particularly for LTRs. The data also allowed for the first time the survey of frequency of TE insertions inside other TEs in comparison with TE insertion into none-TE regions. In summary, our data suggest that retrotransposon elements have played a significant role in the evolution of Homo sapiens.
Resumo:
Understanding the machinery of gene regulation to control gene expression has been one of the main focuses of bioinformaticians for years. We use a multi-objective genetic algorithm to evolve a specialized version of side effect machines for degenerate motif discovery. We compare some suggested objectives for the motifs they find, test different multi-objective scoring schemes and probabilistic models for the background sequence models and report our results on a synthetic dataset and some biological benchmarking suites. We conclude with a comparison of our algorithm with some widely used motif discovery algorithms in the literature and suggest future directions for research in this area.
Resumo:
Ordered gene problems are a very common classification of optimization problems. Because of their popularity countless algorithms have been developed in an attempt to find high quality solutions to the problems. It is also common to see many different types of problems reduced to ordered gene style problems as there are many popular heuristics and metaheuristics for them due to their popularity. Multiple ordered gene problems are studied, namely, the travelling salesman problem, bin packing problem, and graph colouring problem. In addition, two bioinformatics problems not traditionally seen as ordered gene problems are studied: DNA error correction and DNA fragment assembly. These problems are studied with multiple variations and combinations of heuristics and metaheuristics with two distinct types or representations. The majority of the algorithms are built around the Recentering- Restarting Genetic Algorithm. The algorithm variations were successful on all problems studied, and particularly for the two bioinformatics problems. For DNA Error Correction multiple cases were found with 100% of the codes being corrected. The algorithm variations were also able to beat all other state-of-the-art DNA Fragment Assemblers on 13 out of 16 benchmark problem instances.
Resumo:
Understanding the relationship between genetic diseases and the genes associated with them is an important problem regarding human health. The vast amount of data created from a large number of high-throughput experiments performed in the last few years has resulted in an unprecedented growth in computational methods to tackle the disease gene association problem. Nowadays, it is clear that a genetic disease is not a consequence of a defect in a single gene. Instead, the disease phenotype is a reflection of various genetic components interacting in a complex network. In fact, genetic diseases, like any other phenotype, occur as a result of various genes working in sync with each other in a single or several biological module(s). Using a genetic algorithm, our method tries to evolve communities containing the set of potential disease genes likely to be involved in a given genetic disease. Having a set of known disease genes, we first obtain a protein-protein interaction (PPI) network containing all the known disease genes. All the other genes inside the procured PPI network are then considered as candidate disease genes as they lie in the vicinity of the known disease genes in the network. Our method attempts to find communities of potential disease genes strongly working with one another and with the set of known disease genes. As a proof of concept, we tested our approach on 16 breast cancer genes and 15 Parkinson's Disease genes. We obtained comparable or better results than CIPHER, ENDEAVOUR and GPEC, three of the most reliable and frequently used disease-gene ranking frameworks.
Resumo:
Seven crayfish species from three genera of the subfamily Cambarinae were electrophoretically examined for genetic variation at a total of twenty-six loci. Polymorphism was detected primarily at three loci: Ao-2, Lap, and Pgi. The average heterozygosities over-all loci for each species were found to be very low when compared to most other invertebrate species that have been examined electrophoretically. With the exception of Cambarus bartoni, the interpopulation genetic identities are high within any given species. The average interspecific identities are somewhat lower and the average intergeneric identities are lower still. Populations, species and genera conform to the expected taxonomic progression. The two samples of ~ bartoni show high genetic similarity at only 50 percent of the loci compared. Locus by locus identity comparisons among species yield U-shaped distributions of genetic identities. Construction of a phylogenetic dendrogram using species mean genetic distances values shows that species grouping is in agreement with morphological taxonomy with the exception of the high similarity between Orconectespropinquus and Procambarus pictus. This high similarity suggests the possibility of a regulatory change between the two species. It appears that the low heterozygosities, high interpopulation genetic identities, and taxonomic mispositioning can all be explained on the basis of low mutation rates.
Resumo:
This thesis introduces the Salmon Algorithm, a search meta-heuristic which can be used for a variety of combinatorial optimization problems. This algorithm is loosely based on the path finding behaviour of salmon swimming upstream to spawn. There are a number of tunable parameters in the algorithm, so experiments were conducted to find the optimum parameter settings for different search spaces. The algorithm was tested on one instance of the Traveling Salesman Problem and found to have superior performance to an Ant Colony Algorithm and a Genetic Algorithm. It was then tested on three coding theory problems - optimal edit codes, optimal Hamming distance codes, and optimal covering codes. The algorithm produced improvements on the best known values for five of six of the test cases using edit codes. It matched the best known results on four out of seven of the Hamming codes as well as three out of three of the covering codes. The results suggest the Salmon Algorithm is competitive with established guided random search techniques, and may be superior in some search spaces.
Resumo:
This thesis focuses on developing an evolutionary art system using genetic programming. The main goal is to produce new forms of evolutionary art that filter existing images into new non-photorealistic (NPR) styles, by obtaining images that look like traditional media such as watercolor or pencil, as well as brand new effects. The approach permits GP to generate creative forms of NPR results. The GP language is extended with different techniques and methods inspired from NPR research such as colour mixing expressions, image processing filters and painting algorithm. Colour mixing is a major new contribution, as it enables many familiar and innovative NPR effects to arise. Another major innovation is that many GP functions process the canvas (rendered image), while is dynamically changing. Automatic fitness scoring uses aesthetic evaluation models and statistical analysis, and multi-objective fitness evaluation is used. Results showed a variety of NPR effects, as well as new, creative possibilities.