7 resultados para Endocrine and Autonomic Systems

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Whereas the role of the anterior cingulate cortex (ACC) in cognitive control has received considerable attention, much less work has been done on the role of the ACC in autonomic regulation. Its connections through the vagus nerve to the sinoatrial node of the heart are thought to exert modulatory control over cardiovascular arousal. Therefore, ACC is not only responsible for the implementation of cognitive control, but also for the dynamic regulation of cardiovascular activity that characterizes healthy heart rate and adaptive behaviour. However, cognitive control and autonomic regulation are rarely examined together. Moreover, those studies that have examined the role of phasic vagal cardiac control in conjunction with cognitive performance have produced mixed results, finding relations for specific age groups and types of tasks but not consistently. So, while autonomic regulatory control appears to support effective cognitive performance under some conditions, it is not presently clear just what factors contribute to these relations. The goal of the present study was, therefore, to examine the relations between autonomic arousal, neural responsivity, and cognitive performance in the context of a task that required ACC support. Participants completed a primary inhibitory control task with a working memory load embedded. Pre-test cardiovascular measures were obtained, and ontask ERPs associated with response control (N2/P3) and error-related processes (ERN/Pe) were analyzed. Results indicated that response inhibition was unrelated to phasic vagal cardiac control, as indexed by respiratory sinus arrhythmia (RSA). However, higher resting RSA was associated with larger ERN ampUtude for the highest working memory load condition. This finding suggests that those individuals with greater autonomic regulatory control exhibited more robust ACC error-related responses on the most challenging task condition. On the other hand, exploratory analyses with rate pressure product (RPP), a measure of sympathetic arousal, indicated that higher pre-test RPP (i.e., more sympathetic influence) was associated with more errors on "catch" NoGo trials, i.e., NoGo trials that simultaneously followed other NoGo trials, and consequently, reqviired enhanced response control. Higher pre-test RPP was also associated with smaller amplitude ERNs for all three working memory loads and smaller ampUtude P3s for the low and medium working memory load conditions. Thus, higher pretest sympathetic arousal was associated with poorer performance on more demanding "catch" NoGo trials and less robust ACC-related electrocortical responses. The findings firom the present study highlight tiie interdependence of electrocortical and cardiovascular processes. While higher pre-test parasympathetic control seemed to relate to more robust ACC error-related responses, higher pre-test sympathetic arousal resulted in poorer inhibitory control performance and smaller ACC-generated electrocortical responses. Furthermore, these results provide a base from which to explore the relation between ACC and neuro/cardiac responses in older adults who may display greater variance due to the vulnerabihty of these systems to the normal aging process.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The biotransformation of water insoluble substrates by mammalian and bacterial cells has been problematic, since these whole cell reactions are primarily performed in an aqueous environment The implementation of a twophase or encapsulated system has the advantages of providing a low water system along with the physiological environment the cells require to sustain themselves. Encapsulation of mammalian cells by formation of polyamide capsules via interfacial polymerization illustrated that the cells could not survive this type of encapsulation process. Biotransformation of the steroid spironolactone [3] by human kidney carcinoma cells was performed in a substrate-encapsulated system, yielding canrenone [4] in 70% yield. Encapsulation of nitrile-metabolizing Rhodococcus rhodochrous cells using a polyamide membrane yielded leaky capsules, but biotransformation of 2-(4- chlorophenyl)-3-methylbutyronitrile (CPIN) [6] in a free cell system yielded CPIN amide [7] in 40% yield and 94% ee. A two-phase biotransformation of CPIN consisting of a 5:1 ratio of tris buffer, pH 7.2 to octane respectively, gave CPIN acid [8] in 30% yield and 97% ee. It was concluded that Rhodococcus rhodochrous ATCC 17895 contained a nonselective nitrile hydratase and a highly selective amidase enzyme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The formation and the isolation of fluoroboron salts, (D2BF2+)(PF6-), (DD'BF2+)(PF6-) and (D3BF2+)(PF6-)2, have been carried out. 1,8-Diazabicyclo [5,4.0]undec-7-ene (DBU) and 1,5-diazabicyclo[4,3,O]non-5-ene (DBN), extremely strong organic bases, were introduced into the fluoroboron cation systems and induced a complicated redistribution reaction in the D/BF3/BC13 systems. The result was the formation of all BFnCI4-n-, D.BFnCI3-n and fluoroboron cation species which were detected by 19p and 11B NMR spectrometry. The displacement reaction of CI- from these D.BFnCI3-n (n = 1 and 2) species by the second entering ligand is much faster than in other nitrogen donor containing systems which have been previously studied. Tetramethylguanidine, oxazolines and thiazolines can also produce similar reactions in D/BF3/BCI3 systems, but no significant BFnC4-n- species were observed. As well as influences of their basicity and their steric hindrance, N=C-R(X) (X = N, 0 or S) and N=C( X)2 (X = N or S) structures of ligands have significant effects on the fonnationof fluoroboron cations and the related NMR parameters. D3BF2+ and some D2BF2+ show the expected inertness, but (DBU)2BF2+ shows an interestingly high reactivity. (D2BF2+)(X-) formed from weak organic bases such as pyridine can react with stronger organic bases and form DD'BF2+ and D'2BF2+ in acetone or nitromethane. Fast atom bombardment mass spectrometry is doubly meaningful to this work. Firstly, FABMS can be directly applied to the complicated fluoroboron cation containing solution systems as an excellent complementary technique to multinuclear NMR. Secondly, the gas-phase ion substitution reaction of (D2BF2+)(PF6-) with the strong organic bases is successfully observed in a FABMS ion source when the B-N bond is not too strong in these cations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A conceptual analysis of educational leadership explored the influence of managed and living systems on 21st century leadership discourse. Drawing on a detailed understanding of managed and living systems theory compiled from the work of Capra (2002), Morgan (1997), Mitchell and Sackney (2009), and Wheatley (2007), this study draws attention to the managed systems systemic concepts of efficiency, control, and standardization, and the living systems concepts of collaboration, shared meaning, change, and interconnection as markers of systems theory that find resonance within leadership literature. Using these systemic concepts as a framework, this study provides important insights into the espousal of managed and living systems concepts within the leadership discourse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reduced capacity for executive cognitive function and for the autonomic control of cardiac responsivity are both concomitants of the aging process. These may be linked through their mutual dependence on medial prefrontal function, but the specifics ofthat linkage have not been well explored. Executive functions associated with medial prefrontal cortex involve various aspects ofperformance monitoring, whereas centrally mediated autonomic functions can be observed as heart rate variability (HRV), i.e., variability in the length of intervals between heart beats. The focus for this thesis was to examine the degree to which the capacity for phasic autonomic adjustments to heart rate relates to performance monitoring in younger and older adults, using measures of electrocortical and autonomic activity. Behavioural performance and attention allocation during two age-sensitive tasks could be predicted by various aspects of autonomic control. For young adults, greater influence of the parasympathetic system on HRV was beneficial for learning unfamiliar maze paths; for older adults, greater sympathetic influence was detrimental to these functions. Further, these relationships were primarily evoked when the task required the construction and use of internalized representations of mazes rather than passive responses to feedback. When memory for source was required, older adults made three times as many source errors as young adults. However, greater parasympathetic influence on HRV in the older group was conducive to avoiding source errors and to reduced electrocortical responses to irrelevant information. Higher sympathetic predominance, in contrast, was associated with higher rates of source error and greater electrocortical responses tq non-target information in both groups. These relations were not seen for 11 errors associated with a speeded perceptual task, irrespective of its difficulty level. Overall, autonomic modulation of cardiac activity was associated with higher levels of performance monitoring, but differentially across tasks and age groups. With respect to age, those older adults who had maintained higher levels of autonomic cardiac regulation appeared to have also maintained higher levels of executive control over task performance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis tested a model of neurovisceral integration (Thayer & Lane, 2001) wherein parasympathetic autonomic regulation is considered to play a central role in cognitive control. We asked whether respiratory sinus arrhythmia (RSA), a parasympathetic index, and cardiac workload (rate pressure product, RPP) would influence cognition and whether this would change with age. Cognitive control was measured behaviourally and electrophysiologically through the error-related negativity (ERN) and error positivity (Pe). The ERN and Pe are thought to be generated by the anterior cingulate cortex (ACC), a region involved in regulating cognitive and autonomic control and susceptible to age-related change. In Study 1, older and younger adults completed a working memory Go/NoGo task. Although RSA did not relate to performance, higher pre-task RPP was associated with poorer NoGo performance among older adults. Relations between ERN/Pe and accuracy were indirect and more evident in younger adults. Thus, Study 1 supported the link between cognition and autonomic activity, specifically, cardiac workload in older adults. In Study 2, we included younger adults and manipulated a Stroop task to clarify conditions under which associations between RSA and performance will likely emerge. We varied task parameters to allow for proactive versus reactive strategies, and motivation was increased via financial incentive. Pre-task RSA predicted accuracy when response contingencies required maintenance of a specific item in memory. Thus, RSA was most relevant when performance required proactive control, a metabolically costly strategy that would presumably be more reliant on autonomic flexibility. In Study 3, we included older adults and examined RSA and proactive control in an additive factors framework. We maintained the incentive and measured fitness. Higher pre-task RSA among older adults was associated with greater accuracy when proactive control was needed most. Conversely, performance of young women was consistently associated with fitness. Relations between ERN/Pe and accuracy were modest; however, isolating ACC activity via independent component analysis allowed for more associations with accuracy to emerge in younger adults. Thus, performance in both groups appeared to be differentially dependent on RSA and ACC activation. Altogether, these data are consistent with a neurovisceral integration model in the context of cognitive control.