8 resultados para Embryonic Mortality, Fungal Infection, Habitat Choice, Soil pH, Terrestrial Nesting
em Brock University, Canada
Resumo:
The monoterpenoid indole alkaloids (MIAs) of Madagascar periwinkle (Catharanthus roseus) are known to be among the most important source of natural drugs used in various cancer chemotherapies. MIAs are derived by combining the iridoid secologanin with tryptamine to form the central precursor strictosidine that is then converted to most known MIAs, such as catharanthine and vindoline that dimerize to form anticancer vinblastine and vincristine. While their assembly is still poorly understood, the complex multistep pathways involved occur in several specialized cell types within leaves that are regulated by developmental and environmental cues. The organization of MIA pathways is also coupled to secretory mechanisms that allow the accumulation of catharanthine in the waxy leaf surface, separated from vindoline found within leaf cells. While the spatial separation of catharanthine and vindoline provides an explanation for the low levels of dimeric MIAs found in the plants, the secretion of catharanthine to the leaf surface is shown to be part of plant defense mechanisms against fungal infection and insect herbivores. The transcriptomic databases of Catharanthus roseus and various MIA producing plants are facilitating bioinformatic approaches to identify novel MIA biosynthetic genes. Virus-induced gene silencing (VIGS) is being used to screen these candidate genes for their involvement in iridoid biosynthesis pathway, especially in the identification of 7-deoxyloganic acid 7-hydroxylase (CrDL7H) shown by the accumulation of its substrate, 7-deoxyloganic acid and decreased level of secologanin along with catharanthine and vindoline. VIGS can also confirm the biochemical function of genes being identified, such as in the glucosylation of 7-deoxyloganetic acid by CrUGT8 shown by decreased level of secologanin and MIAs within silenced plants. Silencing of other iridoid biosynthetic genes, loganic acid O-methyltransferase (LAMT) and secologanin synthase (SLS) also confirm the metabolic route for iridoid biosynthesis in planta through 7-deoxyloganic acid, loganic acid, and loganin intermediates. This route is validated by high substrate specificity of CrUGT8 for 7-deoxyloganetic acid and CrDL7H for 7-deoxyloganic acid. Further localization studies of CrUGT8 and CrDL7H also show that these genes are preferentially expressed within Catharanthus leaves rather than in epidermal cells where the last two steps of secologanin biosynthesis occur.
Resumo:
The gypsy moth, Lymantria dispar, a major defoliator of broad leaf trees, was accidentally introduced into North America in 1869. Much interest has been generated regarding the potential of using natural pathogens for biological control of this insect. One of these pathogens, a highly specific fungus, Entomophaga maimaiga, was accredited with causing major epizootics in populations of gypsy moth across the north-eastern United States in 1989 and 1990 and is thought to be spreading northwards into Canada. This study examined gypsy moth population densities in the Niagara Region. The fungus, .E.. maimaiga, was artificially introduced into one site and the resulting mortality in host populations was noted over two years. The relationship between fungal mortality, host population density and occurrence of another pathogen, the nuclear polyhedrosis virus (NPV), was assessed. Gypsy moth population density was assessed by counting egg masses in 0.01 hectare (ha) study plots in six areas, namely Louth, Queenston, Niagara-on-the-Lake, Shorthills Provincial Park, Chippawa Creek and Willoughby Marsh. High variability in density was seen among sites. Willoughby Marsh and Chippawa Creek, the sites with the greatest variability, were selected for more intensive study. The pathogenicity of E. maimaiga was established in laboratory trials. Fungal-infected gypsy moth larvae were then released into experimental plots of varying host density in Willoughby Marsh in 1992. These larvae served as the inoculum to infect field larvae. Other larvae were injected with culture medium only and released into control plots also of varying host density. Later, field larvae were collected and assessed for the presence of .E.. maimaiga and NPV. A greater proportion of larvae were infected from experimental plots than from control plots indicating that the experimental augmentation had been successful. There was no relationship between host density and the proportion of infected larvae in either experimental or control plots. In 1992, 86% of larvae were positive for NPV. Presence and intensity of NPV infection was independent of fungal presence, plot type or interaction of these two factors. Sampling was carried out in the summer of 1993, the year after the introduction, to evaluate the persistence of the pathogen in the environment. Almost 50% of all larvae were infected with the fungus. There was no difference between control and experimental plots. Data collected from Willoughby Marsh indicated that there was no correlation between the proportion of larvae infected with the fungus and host population density in either experimental or control plots. About 10% of larvae collected from a nearby site, Chippawa Creek, were also positive for .E.. maimaiga suggesting that low levels of .E.. maimaiga probably occurred naturally in the area. In 1993, 9.6% of larvae were positive for NPV. Again, presence or absence of NPV infection was independent of fungal presence plot type or interaction of these two factors. In conclusion, gypsy moth population densities were highly variable between and within sites in the Niagara Region. The introduction of the pathogenic fungus, .E.. maimaiga, into Willoughby Marsh in 1992 was successful and the fungus was again evident in 1993. There was no evidence for existence of a relationship between fungal mortality and gypsy moth density or occurrence of NPV. The results from this study are discussed with respect to the use of .E.. maimaiga in gypsy moth management programs.
Resumo:
Thesis (Ph.D.)--Brock University, 2010.
Resumo:
The resurgence of malaria in highland regions of Africa, Oceania and recently in South America underlines the importance of the study of the ecology of highland mosquito vectors of malaria. Since the incidence of malaria is limited by the distribution of its vectors, the purpose of this PhD thesis was to examine aspects of the ecology of Anopheles mosquitoes in the Andes of Ecuador, South America. A historical literature and archival data review (Chapter 2) indicated that Anopheles pseudopunctipennis transmitted malaria in highland valleys of Ecuador prior to 1950, although it was eliminated through habitat removal and the use of chemical insecticides. Other anopheline species were previously limited to low-altitude regions, except in a few unconfirmed cases. A thorough larval collection effort (n=438 attempted collection sites) in all road-accessible parts of Ecuador except for the lowland Amazon basin was undertaken between 2008 - 2010 (Chapter 3). Larvae were identified morphologically and using molecular techniques (mitochondrial COl gene), and distribution maps indicated that all five species collected (Anopheles albimanus, An. pseudopunctipennis, Anopheles punctimacula, Anopheles oswaldoi s.l. and Anopheles eiseni) were more widespread throughout highland regions than previously recorded during the 1940s, with higher maximum altitudes for all except An. pseudopunctipennis (1541 m, 1930 m, 1906 m, 1233 m and 1873 m, respectively). During larval collections, to characterize species-specific larval habitat, a variety of abiotic and biotic habitat parameters were measured and compared between species-present and species-absent sites using chi-square tests and stepwise binary logistic regression analyses (Chapter 4). An. albimanus was significantly associated with permanent pools with sand substrates and An. pseudopunctipennis with gravel and boulder substrates. Both species were significantly associated with floating cyanobacterial mats and warmer temperatures, which may limit their presence in cooler highland regions. Anopheles punctimacula was collected more often than expected from algae-free, shaded pools with higher-than-average calculated dissolved oxygen. Anopheles oswaldoi s.l., the species occurring on the Amazonian side of the Andes, was associated with permanent, anthropogenic habitats such as roadside ditches and ponds. To address the hypothesis that human land use change is responsible for the emergence of multiple highland Anopheles species by creating larval habitat, common land uses in the western Andes were surveyed for standing water and potential larval habitat suitability (Chapter 5). Rivers and road edges provided large amounts of potentially suitable anopheline habitat in the western Andes, while cattle pasture also created potentially suitable habitat in irrigation canals and watering ponds. Other common land uses surveyed (banana farms, sugarcane plantations, mixed tree plantations, and empty lots) were usually established on steep slopes and had very little standing water present. Using distribution and larval habitat data, a GIS-based larval habitat distribution model for the common western species was constructed in ArcGIS v.l 0 (ESRI 2010) using derived data layers from field measurements and other sources (Chapter 6). The additive model predicted 76.4 - 97.9% of the field-observed collection localities of An. albimanus, An. pseudopunctipennis and An. punctimacula, although it could not accurately distinguish between species-absent and speciespresent sites due to its coarse scale. The model predicted distributional expansion and/or shift of one or more anopheline species into the following highland valleys with climate warming: Mira/Chota, Imbabura province, Tumbaco, Pichincha province, Pallatanga and Sibambe, Chimborazo province, and Yungilla, Azuay province. These valleys may serve as targeted sites of future monitoring to prevent highland epidemics of malaria. The human perceptions of malaria and mosquitoes in relation to land management practices were assessed through an interview-based survey (n=262) in both highlands and lowlands, of male and female land owners and managers of five property types (Chapter 7). Although respondents had a strong understanding of where the disease occurs in their own country and of the basic relationship among standing water, mosquitoes and malaria, about half of respondents in potential risk areas denied the current possibility of malaria infection on their own property. As well, about half of respondents with potential anopheline larval habitat did not report its presence, likely due to a highly specific definition of suitable mosquito habitat. Most respondents who are considered at risk of malaria currently use at least one type of mosquito bite prevention, most commonly bed nets. In conclusion, this interdisciplinary thesis examines the occurrence of Anopheles species in the lowland transition area and highlands in Ecuador, from a historic, geographic, ecological and sociological perspective.
Resumo:
Background: Soil-transmitted helminth (STH) infections are endemic in Honduras but their impact on children’s health is not well studied. Objectives: To evaluate the prevalence and intensity of STH infections and their association with nutrition and growth in a sample of Honduran children. Methodology: A cross-sectional study was done among Honduran rural school-age children in 2011. Blood and stool samples and anthropometric measurements were obtained to determine nutritional status, STH infection and growth status, respectively. Results: The STH prevalence among 320 studied children was 72.5%. Prevalence by species was 30%, 67% and 16% for Ascaris, Trichuris and 16% hookworms, respectively. High intensity infections were associated with decreased growth scores but regardless of intensity, co-infections negatively affected growth indicators. Conclusions: The health burden of STH infections is related to high parasitic load but also to the presence of low-intensity concurrent infections. The synergistic effects of polyparasitism in underprivileged children warrants more attention.
Resumo:
Background: Honduras is endemic for soil-transmitted helminth (STH) infections. However, knowledge gaps remain in terms of risk factors involved in STH transmission and infection intensity. Objectives: To determine the prevalence and intensity of STH infections in schoolchildren living in rural Honduras. Additionally, to investigate risk factors associated with STH infections. Methods: A cross-sectional study was done among Honduran rural schoolchildren, in 2011. Demographic and epidemiological data were obtained and STH infections were determined using Kato-Katz method. Results: A total of 320 children completed the study. Overall and specific prevalences for Ascaris lumbricoides, Trichuris trichiura and hookworms were 72.5%, 30%, 67% and 16%, respectively. Several risk factors associated with STH transmission and infection intensity were identified at the individual and familial level as well as at the schools. Conclusions: Improving hygienic conditions and providing semi-annual deworming treatment are feasible interventions that could enhance undergoing STH control activities.
Resumo:
While nitrogen is critical for all plants, they are unable to utilize organically bound nitrogen in soils. Therefore, the majority of plants obtain useable nitrogen through nitrogen fixing bacteria and the microbial decomposition of organic matter. In the majority of cases, symbiotic microorganisms directly furnish plant roots with inorganic forms of nitrogen. More than 80% of all land plants form intimate symbiotic relationships with root colonizing fungi. These common plant/fungal interactions have been defined largely through nutrient exchange, where the plant receives limiting soil nutrients, such as nitrogen, in exchange for plant derived carbon. Fungal endophytes are common plant colonizers. A number of these fungal species have a dual life cycle, meaning that they are not solely plant colonizers, but also saprophytes, insect pathogens, or plant pathogens. By using 15N labeled, Metarhizium infected, wax moth larvae (Galleria mellonella) in soil microcosms, I demonstrated that the common endophytic, insect pathogenic fungi Metarhizium spp. are able to infect living soil borne insects, and subsequently colonize plant roots and furnish ts plant host with useable, insect-derived nitrogen. In addition, I showed that another ecologically important, endophytic, insect pathogenic fungi, Beauveria bassiana, is able to transfer insect-derived nitrogen to its plant host. I demonstrated that these relationships between various plant species and endophytic, insect pathogenic fungi help to improve overall plant health. By using 13C-labeled CO2, added to airtight plant growth chambers, coupled with nuclear magnetic resosnance spectroscopy, I was able to track the movement of carbon from the atmosphere, into the plant, and finally into the root colonized fungal biomass. This indicates that Metarhizium exists in a symbiotic partnership with plants, where insect nitrogen is exchanged for plant carbon. Overall these studies provide the first evidence of nutrient exchange between an insect pathogenic fungus and plants, a relationship that has potentially useful implications on plant primary production, soil health, and overall ecosystem stability.
Resumo:
Soil-transmitted helminth (STH) infections are endemic in Honduras, but their prevalence according to the levels of poverty in the population has not been examined. The present cross-sectional study is aimed to determine the role of different levels of poverty in STH prevalence and infection intensity as well as the potential associations of STH infections with malnutrition and anemia. Research participants were children attending a medical brigade serving remote communities in Northern Honduras in June 2014. Demographic data were obtained, and poverty levels were determined using the unsatisfied basic needs method. STH infections were investigated by the Kato-Katz method; hemoglobin concentrations were determined with the HemoCue system; and stunting, thinness, and underweight were determined by anthropometry. Data were analyzed using descriptive statistics and univariate and multivariable logistic regression models. Among 130 children who participated in this study, a high prevalence (69.2%) of parasitism was found and the poorest children were significantly more infected than those living in less poor communities (79.6% vs. 61.8%; P = 0.030). Prevalence rates of Trichuris trichiura, Ascaris lumbricoides, and hookworms were 69.2%, 12.3%, and 3.85%, respectively. In total, 69% of children had anemia and 30% were stunted. Households’ earthen floor and lack of latrines were associated with infection. Greater efforts should be made to reduce STH prevalence and improve overall childhood health, in particular, among the poorest children lacking the basic necessities of life.