40 resultados para Electronic-properties

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interest in mixed-valent perovskite manganese oxides of La\-xAxMnO^ (v4-divalent alkaline earth Ca, Sr or Ba), whose unusual properties were discovered nearly a half century ago, has recently been revived. The discovery of the colossal magnetoresistance and pressure effects introduced new questions concerning the complex interplay between lattice structure, magnetism and transport in doped perovskite manganites. In this study, we report our experimental investigations of pressure and magnetic field dependencies of La-i/sCai/sMnOs (LCMO) epitaxial films with various thickness on SrTiO$ substrate. An analysis of film thickness dependency of the resistivity of LCMO epitaxial films under pressure and magnetic field has been performed by taking into account substrate contributions. This verifies the correlation of lattice distortion with magnetic and transport properties. Strong dependencies of Mn — O — Mn bond bending and Mn — O bond stretching with pressure as well as Mn spin alignment with magnetic field, and the lattice distortion induced by the substrate are discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Incubations of several polycyclic heteroaromatic compounds and two polycyclic aromatic hydrocarbons with a series of common fungi have been performed. The fungi Cunninghamella elegans ATCC 26269, Rhizopus arrhizus ATCC 11145, and Mortierella isabellina NRRL 1757 were studied in this regard. Of the aza heteroaromatics, only dibenzopyrrole gave a ring hydroxylated product following the incubation with C. elegans. From the thio heteroaromatics studied, dibenzothiophene was metabolized by all the three fungi and thioxanthone by C. elegans and M. isabellina giving sulfones and sulphoxides. Thiochromanone was metabolized stereoselectively to the corresponding sulphoxide by C. elegans. Methyl substituted thioxanthones on incubation with C. elegans produced oxidative products, arising from S -oxidation and hydroxylation at the methyl group. Of the cyclic ketones studied, only fluorenone was reduced to hydroxyfluorene and this metabolism is compared with that reported with cytochrome P-450 monooxygenases of hepatic microsomes. A series of para-substituted ethylbenzenes has been transformed stereoselectively to the 1-phenylethanols by incubation with M. isabellina. Comparisons of the enantiomeric purities obtained from products with their respective para substituent of the same steric size but different electronic properties indicate that the stereoselectivity of hydroxylation at benzylic carbon may be susceptible to electron donating or withdrawing factors in some cases, but that observation is not va lid in all the comparisons. The stereochemistry of the reaction is discussed in terms of three possible steps, ethylbenzene ---) 1-phenylethanol ---) acetophenone ---) 1-phenylethanol. This metabolic pathway could account for the inconsistencies observed in the comparisons of optical purities and electronic character of para substituents. Furthermore, formation of 2-phenylethanol (in some cases), l-(p-acetylphenyl)ethanol from p-diethylbenzene, and N-acetylation of p-ethylaniline was observed. n-Propylbenzene was also converted to optically active 1-phenylpropanol. Acetophenone, p-ethylacetophenone, and o(,~,~-trifluoroacetophenone were transformed to 1-phenylethanol, l-(p-ethylphenyl)ethanol, and 1-phenyl-2,2,2-trifluoroethanol, respectively, with high chemical and excellent optical yields. The 13 C NMR spectra of several substrates and metabolic products have been reported and assigned for the first time.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A series of LaVi^xOs compounds (x=0.00, 0.02, 0.04, 0.06, 0.08) were prepeired using the standard solid reaction. The samples were chareicterized by X-ray diffraction (XRD), fourprobe resistivity, smd magnetic susceptibility studies. Powder X-ray diffraction analysis indicated the formation of a single-phase sample with a orthorhombic structure which was first found in GdFeOs (space group Pnma) . The Unit Cell program was used for calculating lattice peirameters from XFID data. The XRD spectnim could be indexed on a cubic lattice with Og = 2ap ~ (7.8578 to 7.9414 A). The lattice parameter was observed to increase as the Vanadium vacancy increased. Four-probe resistivity measurements exhibited semiconductor behavior for all sajnples from room temperature down to 19K. The resistivity of samples increased with increasing Vanadium vacancy. The resistivity of samples demonstrated activated conduction with an activation energy of approximately 0.2 eV. The activation energy increased with increasing lattice parameter. Field cool magnetic susceptibility measurements were performed with field of 500 G from 300 K to 5 K. These measurements indicated the presence of an antiferromagnetic transition at about 140 K. The data was fitted above Neel temperature to Ciurie-Weiss law yielding a negative parameignetic Curie temperature. This implies that antiferromagnetic ordering is present.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Lead chromium oxide is a photoconductive dielectric material tha t has great potential of being used as a room temperature photodetector. In this research, we made ceramic pellets of this compound as well as potassium doped compound Pb2-xKxCr05, where x=O, 0.05, 0.125. We also investigate the properties of the lanthanum doped sample whose chemical formula is Pb1.85Lao.15Cr05' The electronic, magnetic and thermal properties of these materials have been studied. Magnetization measurements of the Pb2Cr05 sample indicate a transition at about 310 K, while for the lanthanum doped sample the transition temperature is at about 295 K indicating a paramagnetic behavior. However, the potassium doped samples are showing the transition from paramagnetic state to diamagnetic state at different temperatures for different amounts of potassium atoms present in the sample. We have studied resistivity as a function of temperature in different gas environments from 300 K to 900 K. The resistivity measurement of the parent sample indicates a conducting to insulating transition at about 300 K and upon increasing the temperature further, above 450 K the sample becomes an ionic conductor. As temperature increases a decrease in resistance is observed in the lanthanum/potassium doped samples. Using Differential Scanning Calorimetry experiment an endothermic peak is observed for the Pb2Cr05 and lanthanum/potassium doped samples at about 285 K.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new method for sampling the exact (within the nodal error) ground state distribution and nondiflPerential properties of multielectron systems is developed and applied to firstrow atoms. Calculated properties are the distribution moments and the electronic density at the nucleus (the 6 operator). For this purpose, new simple trial functions are developed and optimized. First, using Hydrogen as a test case, we demonstrate the accuracy of our algorithm and its sensitivity to error in the trial function. Applications to first row atoms are then described. We obtain results which are more satisfactory than the ones obtained previously using Monte Carlo methods, despite the relative crudeness of our trial functions. Also, a comparison is made with results of highly accurate post-Hartree Fock calculations, thereby illuminating the nodal error in our estimates. Taking into account the CPU time spent, our results, particularly for the 8 operator, have a relatively large variance. Several ways of improving the eflSciency together with some extensions of the algorithm are suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Polarized reflectance measurements of the quasi I-D charge-transfer salt (TMTSFh CI04 were carried out using a Martin-Puplett-type polarizing interferometer and a 3He refrigerator cryostat, at several temperatures between 0.45 K and 26 K, in the far infrared, in the 10 to 70 cm- 1 frequency range. Bis-tetramethyl-tetraselena-fulvalene perchlorate crystals, grown electrochemically and supplied by K. Behnia, of dimensions 2 to 4 by 0.4 by 0.2 mm, were assembled on a flat surface to form a mosaic of 1.5 by 3 mm. The needle shaped crystals were positioned parallel to each other along their long axis, which is the stacking direction of the planar TMTSF cations, exposing the ab plane face (parallel to which the sheets of CI04 anions are positioned). Reflectance measurements were performed with radiation polarized along the stacking direction in the sample. Measurements were carried out following either a fast (15-20 K per minute) or slow (0.1 K per minute) cooling of the sample. Slow cooling permits the anions to order near 24 K, and the sample is expected to be superconducting below 1.2 K, while fast cooling yields an insulating state at low temperatures. Upon the slow cooling the reflectance shows dependence with temperature and exhibits the 28 cm- 1 feature reported previously [1]. Thermoreflectance for both the 'slow' and 'fast' cooling of the sample calculated relative to the 26 K reflectance data indicates that the reflectance is temperature dependent, for the slow cooling case only. A low frequency edge in the absolute reflectance is assigned an electronic origin given its strong temperature dependence in the relaxed state. We attribute the peak in the absolute reflectance near 30 cm-1 to a phonon coupled to the electronic background. Both the low frequency edge and the 30 cm-1 feature are noted te shift towards higher frequcncy, upon cntering the superconducting state, by an amount of the order of the expected superconducting energy gap. Kramers-Kronig analysis was carried out to determine the optical conductivity for the slowly cooled sample from the measured reflectance. In order to do so the low frequency data was extrapolated to zero frequency using a Hagen-Ru bens behaviour, and the high frequency data was extended with the data of Cao et al. [2], and Kikuchi et al. [3]. The real part of the optical conductivity exhibits an asymmetric peak at 35 cm-1, and its background at lower frequencies seems to be losing spectral weight with lowering of the temperature, leading us to presume that a narrow peak is forming at even lower frequencies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The perovskite crystal structure is host to many different materials from insulating to superconducting providing a diverse range of intrinsic character and complexity. A better fundamental description of these materials in terms of their electronic, optical and magnetic properties undoubtedly precedes an effective realization of their application potential. SmTiOa, a distorted perovskite has a strongly localized electronic structure and undergoes an antiferromagnetic transition at 50 K in its nominally stoichiometric form. Sr2Ru04 is a layered perovskite superconductor (ie. Tc % 1 K) bearing the same structure as the high-tem|>erature superconductor La2_xSrrCu04. Polarized reflectance measurements were carried out on both of these materials revealing several interesting features in the far-infrared range of the spectrum. In the case of SmTiOa, although insulating, evidence indicates the presence of a finite background optical conductivity. As the temperature is lowered through the ordering temperature a resonance feature appears to narrow and strengthen near 120 cm~^ A nearby phonon mode appears to also couple to this magnetic transition as revealed by a growing asymmetry in the optica] conductivity. Experiments on a doped sample with a greater itinerant character and lower Neel temperature = 40 K also indicate the presence of this strongly temperature dependent mode even at twice the ordering temperature. Although the mode appears to be sensitive to the magnetic transition it is unclear whether a magnon assignment is appropriate. At very least, evidence suggests an interesting interaction between magnetic and electronic excitations. Although Sr2Ru04 is highly anisotropic it is metallic in three-dimensions at low temperatures and reveals its coherent transport in an inter-plane Drude-like component to the highest temperatures measured (ie. 90 K). An extended Drude analysis is used to probe the frequency dependent scattering character revealing a peak in both the mass enhancement and scattering rate near 80 cm~* and 100 cm~* respectively. All of these experimental observations appear relatively consistent with a Fermi-liquid picture of charge transport. To supplement the optical measurements a resistivity station was set up with an event driven object oriented user interface. The program controls a Keithley Current Source, HP Nano-Voltmeter and Switching Unit as well as a LakeShore Temperature Controller in order to obtain a plot of the Resistivity as a function of temperature. The system allows for resistivity measurements ranging from 4 K to 290 K using an external probe or between 0.4 K to 295 K using a Helium - 3 Cryostat. Several materials of known resistivity have confirmed the system to be robust and capable of measuring metallic samples distinguishing features of several fiQ-cm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the phonon dispersion, cohesive and thermal properties of raxe gas solids Ne, Ar, Kr, and Xe, using a variety of potentials obtained from different approaches; such as, fitting to crystal properties, purely ab initio calculations for molecules and dimers or ab initio calculations for solid crystalline phase, a combination of ab initio calculations and fitting to either gas phase data or sohd state properties. We explore whether potentials derived with a certain approaxih have any obvious benefit over the others in reproducing the solid state properties. In particular, we study phonon dispersion, isothermal ajid adiabatic bulk moduli, thermal expansion, and elastic (shear) constants as a function of temperatiue. Anharmonic effects on thermal expansion, specific heat, and bulk moduli have been studied using A^ perturbation theory in the high temperature limit using the neaxest-neighbor central force (nncf) model as developed by Shukla and MacDonald [4]. In our study, we find that potentials based on fitting to the crystal properties have some advantage, particularly for Kr and Xe, in terms of reproducing the thermodynamic properties over an extended range of temperatiures, but agreement with the phonon frequencies with the measured values is not guaranteed. For the lighter element Ne, the LJ potential which is based on fitting to the gas phase data produces best results for the thermodynamic properties; however, the Eggenberger potential for Ne, where the potential is based on combining ab initio quantum chemical calculations and molecular dynamics simulations, produces results that have better agreement with the measured dispersion, and elastic (shear) values. For At, the Morse-type potential, which is based on M0ller-Plesset perturbation theory to fourth order (MP4) ab initio calculations, yields the best results for the thermodynamic properties, elastic (shear) constants, and the phonon dispersion curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Background: Previous studies have implied that weight-bearing, intense and prolonged physical activities optimize bone accretion during the grow^ing years. The majority of past inquiries have used dual-energy X-ray absorptiometry (DXA) to examine bone strength and hand-wrist radiography to determine skeletal maturity in children. Recently, quantitative ultrasound (QUS) technologies have been developed to examine bone properties and skeletal maturity in a safe, noninvasive and cost-effective manner. Objective: The purpose of this study was to compare bone properties and skeletal maturity in competitive male child and adolescent athletes with minimallyactive, age-matched controls, using QUS technology. >. Methods: In total, 224 males were included in the study. The 115 pre-pubertal boys aged 10-12 years consisted of control, minimally-active children (n=34), soccer players (n=26), gymnasts (n=25) and hockey players (n=30). In addition, the 109 late-pubertal boys aged 14-16 years consisted of control, minimally-active adolescents (n=31), soccer players (n=30), gymnasts (n=17) and hockey players (n=31). The athletic groups were elite level players that predominantly trained year-round. Physical activity, nutrition and sports participation were assessed with various questionnaires. Anthropometries, such as height, weight and relative body fat percentage (BF%) were assessed using standard measures. Skeletal strength and age were evaluated using bone QUS. Lastly, salivary testosterone (sT) concentration was measured using Radioimmunoassay (RIA). Results: Within each age group, there were no significant differences between the activity groups in age and pubertal stage. An age effect was apparent in all variables, as expected. A sport effect was noted in all physical characteristics: the child and adolescent gymnasts were shorter and lighter than other sports groups. Adiposity was greater in the controls and in the hockey players. All child subjects were pubertal stage (fanner) I or II, while adolescent subjects were pubertal stage IV or V. There were no differences in daily energy and mineral intakes between sports groups. In both age groups, gymnasts had a higher training volume than other athletic groups. Bone speed of sound (50s) was higher in adolescents compared with the children. Gymnasts had signifieantly higher radial 50S than controls, hockey and soccer players in both age cohorts. Hockey athletes also had higher radial 50S than controls and soccer players in the child and adolescent groups, respectiyely. Child gymnasts and soccer players had greater tibial 50S compared with the hockey players and control groups. Likewise, adolescent gymnasts and soccer players had higher tibial SoS compared with the control group. No interaction was apparent between age and type of activity in any of the bone measures. » Lastly, maturity as assessed by sT and secondary sex characteristics (Tanner stage) was not different between sports group within each age group. Despite the similarity in chronological age, androgen levels and sexual maturity, differences between activity groups were noted in skeletal maturity. In the younger group, hockey players had the highest bone age while the soccer players had the lowest bone age. In the adolescent group, gymnasts and hockey players were characterized by higher skeletal maturity compared with controls. An interaction between the age and sport type effects was apparent in skeletal maturity, reflecting the fact that among the children, the soccer players were significantly less mature than the rest of the groups, while in the adolescents, the controls were the least skeletally mature. Summary and Conclusions: In summary, radial and tibial SOS are enhanced by the unique loading pattern in each sport (i.e, upper and lower extremities in gymnastics, lower extremities in soccer), with no cumulative effect between childhood and adolescence. That is, the effect of sport participation on bone SOS was apparent already among the young athletes. Enhanced bone properties among athletes of specific sports suggest that participation in these sports can improve bone strength and potential bone health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

/c-(BETS)2FeBr4 is the first antiferromagnetic organic superconductor with successive antiferromagnetic and superconducting transitions at Ta^=2.5K and Tc=l.lK respectively at ambient pressure. Polarized reflectance measurements were performed on three single crystalsamples of this material using a Briiker IFS66V/S Interferometer, and a Bolometer detector or an MCT detector, at seven temperatures between 4K and 300K, in both the far-infrared and mid-infrared frequency range. After the reflectance results were obtained, the Kramers-Kronig dispersion relation was apphed to determine the optical conductivity of /c-(BETS)2FeBr4 at these seven temperatures. Additionally, the optical conductivity spectra were fitted with a Drude/Lorentz Oscillator model in order to study the evolution of the optical conductivity with temperature along the a-axis and c-axis. The resistivities calculated from the Drude model parameters along the a-axis and c-axis agreed reasonably with previous transport measurements.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Increasing citrate concentration, at constant ionic strength (30 mM) decreases the rate of cytochrome ~ reduction by ascorbate. This effect is also seen at both high (600 mM) and low (19 mM) ionic strengths, and the Kapp for citrate increases with increasing ionic strength. Citrate binds d both ferri -and ferrocytochrome ~, but with a lower affinity for the latter form (Kox . .red d = 2 mM, Kd = 8 mM) as shown by an equilibrium assay with N,N,N',N', Tetramethyl E- phenylenediamine. The reaction of ferricytochrome ~with cyanide is also altered in the presence of citrate: citrate increases the K~PP for cyanide. Column chromatography of cytochrome ~-cytochrome oxidase mixtures shows citrate increases the dissociation constant of the complex. These results are confirmed in kinetic assays for the "loose"site (Km = 20 pM) only. The effect of increasing citrate observable at the "tight" site (Km = 0.25 pM) is on the turnover number and not on the K . These results suggest a mechanism m where anion binding to cytochrome £ at the tight site affects the equilibrium between two forms of cytochrome c bound cytochrome oxidase: an active and an inactive one.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

K-(BETS)2FeBr4 is a quasi-2D charge transfer organic metal with interesting electronic and magnetic properties. It undergoes a transition to an antiferromagnetic (AF) state at ambient pressure at the Neel temperature (T^^) = 2.5 K, as well as to a superconducting (SC) state at 1.1 K [1]. The temperature dependence of the electrical resistivity shows a small decrease at T;v indicating the resistivity drops as a result of the onset of the ordering of Fe'*''" spins. A sharp drop in the resistivity at 1.1 K is due to its superconducting transition. The temperature dependence of the susceptibility indicates an antiferromagnetic spin structure with the easy axis parallel to the a-axis. The specific heat at zero-field shows a large peak at about 2.4 K, which corresponds to the antiferromagnetic transition temperature (Tat) and no anomaly is observed around the superconducting transition temperature (1.1 K) demonstrating that the magnetically ordered state is not destroyed by the appearance of another phase transition (the superconducting transition) in the 7r-electron layers [1], [2]. This work presents an investigation of how the low frequency electromagnetic response is affected by the antiferromagnetic and superconducting states, as well as the onset of strong correlation. The location of the easy axis of three samples was determined and polarized thermal reflectance measurements of these «-(BETS)2FeBr4 samples oriented with their vertical axis along the a- and c axes were then carried out using a *He refrigerator cryostat and a Martin-Puplett type polarizing interferometer at various temperatures (T = 0.5 K, 1.4 K. 1.9 K, 2.8 K) above and below the superconducting state and/or antiferromagnetic state. Comparison of the SC state to the normal state along the o- and c-axes indicates a rising thermal reflectance at low frequencies (below 10 cm"' ) which may be a manifestation of the superconducting energy gap. A dip-Hke feature is detected at low frequencies (below 15 cm"') in the thermal reflectance plots which probe the antiferromagnetic state along the two axes, and may be due to the opening of a gap in the excitation spectrum as a result of the antiferromagnetism. In another set of experiments, thermal reflectance measurements carried out along the a- and c-axes at higher temperatures (10 K-80 K) show that the reflectivity decreases with increasing temperature to 60 K (the coherence temperature) above which it increases again. Comparison of the thermal reflectance plots along the a- and c-axes at higher temperatures reveals an anisotropy between these two axes. The Hagen-Rubens thermal reflectance plots corresponding to an average over the ac-plane were calculated using experimental hterature resistivity values. Comparison of the Hagen-Rubens plots with the experimental thermal reflectance along the a- and c-axes indicates that both exhibit the general trend of a decrease in thermal reflectance with increasing frequency, however the calculated Hagen-Rubens thermal reflectance at different temperatures is much lower than the experimental curves.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The far infrared reflectance of Sb2Te3 , Sbi.97Vo.o3Te3 and Sbi.94Cr .o6Te3 was measured near normal incidence at different temperatures (between 45K and 300K). The direct current resistivities of the above samples were also measured between the temperatures of 4K and 300K. Also Kramers Kronig (KK) analyses were performed on the reflectance spectra to obtain the optical conductivities. In the doped samples, it was observed that a phonon at 62cm-1 softens to about 55cm-1 on decreasing the temperature from 295K to 45K. Also, it was observed that the plasma frequency of the doped samples is independent of doping. The scattering rate for the vanadium doped sample was seen to be greater than that for the chromium doped sample despite the fact that vanadium impurity density is less than that of chromium. The Drude-Lorentz model fits to the KK optical conductivity show that the samples used in this work are conventional metals. Definitive measurements of the temperature dependence of the scattering rate across the ferromagnetic transition await equipment changes allowing measurements at low temperature using the mercury cadmium telluride (MCT) detector.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Using the Physical Vapor Transport method, single crystals of Cd2Re207 have been grown, and crystals of dimensions up to 8x6x2 mm have been achieved. X-ray diffraction from a single crystal of Cd2Re207 has showed the crystal growth in the (111) plane. Powder X-ray diffraction measurements were performed on ^^O and ^^O samples, however no difference was observed. Assigning the space group Fd3m to Cd2Re207 at room temperature and using structure factor analysis, the powder X-ray diffraction pattern of the sample was explained through systematic reflection absences. The temperatiure dependence of the resistivity measurement of ^^O has revealed two structural phase transitions at 120 and 200 K, and the superconducting transition at 1.0 K. Using Factor Group Analysis on three different structiures of Cd2Re207, the number of IR and Raman active phonon modes close to the Brillouin zone centre have been determined and the results have been compared to the temperature-dependence of the Raman shifts of ^^O and ^*0 samples. After scaling (via removing Bose-Einstein and Rayleigh scattering factors from the scattered light) all spectra, each spectrum was fitted with a number of Lorentzian peaks. The temperature-dependence of the FWHM and Raman shift of mode Eg, shows the effects of the two structurjil phase transitions above Tc. The absolute reflectance of Cd2Re207 - '^O single crystals in the far-infrared spectral region (7-700 cm~^) has been measured in the superconducting state (0.5 K), right above the superconducting state (1.5 K), and in the normal state (4.2 K). Thermal reflectance of the sample at 0.5 K and 1.5 K indicates a strong absorption feature close to 10 cm~^ in the superconducting state with a reference temperature of 4.2 K. By means of Kramers-Kronig analysis, the absolute reflectance was used to calculate the optical conductivity and dielectric function. The real part of optical conductivity shows five distinct active phonon modes at 44, 200, 300, 375, and 575 cm~' at all temperatures including a Drude-like behavior at low frequencies. The imaginary part of the calculated dielectric function indicates a mode softening of the mode 44 cm~' below Tc.