6 resultados para Electron-Phonon interaction
em Brock University, Canada
Resumo:
The superconducting transition temperature Tc of metallic glasses ZrxFelOO-x (x=80, 75), Zr75(NixFelOO-x)25 (x=75, 50, 25), and CU2SZr75 were measured under quasi-hydrostatic pressure up to 8 OPa (80kbar). The volume (pressure) dependence of the electron-phonon coupling parameters Aep for CU25Zr75 was calculated using the McMillan equatio11. Using this volume dependence of Aep and the modified McMillan equation which incorporates spin-fluctuations, the volume dependence of the spin fluctuation parameter, Asf, was determined in Zr75Ni25, ZrxFelOO-x , a11d Zr75(NixFelOO-x)25. It was found that with increasing pressure, spinfluctuations are suppressed at a faster rate in ZrxFe lOO-x and Zr75(NixFelOO-x)25, as Fe concentration is increased. The rate of suppression of spin-fluctuations with pressure was also found to be higher in Fe-Zr glasses than in Ni-Zr glasses of similar composition.
Resumo:
Light microscope studies of the mycoparasite Piptocephalis virginiana revealed that the cylindrical spores of the parasite became spherical upon germination and produced 1-4 germ tubes. Generally t"l.vO germ tubes were produced by each spore. When this parasite was inoculated on its potential hosts, Choanephora cucurbitarum and Phascolomyces articulosus, the germ tube nearest to the host hypha continued to grow and made contact with the host hypha. The tip of the parasite's germ tube became swollen to form a distinct appressorium. Up to this stage the behavior of the parasite was similar regardless of the nature of the host. In the compatible host-parasite combination, the parasite penetrated the host, established a nutritional relationship and continued to grow to cover the host completely with its buff colored spores in 3-4 days. In the incompatible host-parasite combination, the parasite penetrated the host but its further advance was arrested. As a result of failure to establish a nutritional relationship with the resistant host, the parasite made further attempts to penetrate the host at different sites producing multiple infections. In the absence of nutrition the parasite weakened and the host outgrew the parasite completely. In the presence of a non-host species, Linderina pennispora the parasite continued to grow across the non-host 1).yp_hae vlithout establishing an initial contact. Germination studies showed that the parasite germinated equally well in the presence of host and non-host species. Further electron microscope studies revealed that the host-parasite interaction between P. virginiana and its host, C. cucurbi tarum, was compatible when the host hyphae were young slender, with a thin cell wall of one layer. The parasite appeared to penetrate mechanically by pushing the host-cell wall inward. The host plasma membrane invaginated along the involuted cell wall. The older hyphae of C. cucurbitarum possessed two distinct layers of cell wall and-showed an incompatible interaction when challenged vlith the parasite. At the point of contact, the outer layer of the host-cell wall dissolved, probably by enzymatic digestion, and the inner layer became thickened and developed a papilla as a result of its response to the parasite. The haustoria of the parasite in the old hyphae were always surrounded by a thick, well developed sheath, whereas the haustoria of the same age in the young host mycelium were devoid of a sheath during early stages of infection. Instead, they were in direct contact with the host protoplast. The incompatible interaction between a resistant host, P. articulosus and the parasite showed similar results as with the old hyphae of C. cucurbitarum. The cell wall of P. articulosus appeared thick-with two or more layers even in the 18-22 h-old hyphae. No contact or interaction was established between the parasite and the non-host L. pennispora. The role of cell wall in the resistance mechanism is discussed.
Resumo:
New density functionals representing the exchange and correlation energies (per electron) are employed, based on the electron gas model, to calculate interaction potentials of noble gas systems X2 and XY, where X (and Y) are He,Ne,Ar and Kr, and of hydrogen atomrare gas systems H-X. The exchange energy density functional is that recommended by Handler and the correlation energy density functional is a rational function involving two parameters which were optimized to reproduce the correlation energy of He atom. Application of the two parameter function to other rare gas atoms shows that it is "universal"; i. e. ,accurate for the systems considered. The potentials obtained in this work compare well with recent experimental results and are a significant improvement over those from competing statistical modelS.
Resumo:
The atomic mean square displacement (MSD) and the phonon dispersion curves (PDC's) of a number of face-centred cubic (fcc) and body-centred cubic (bcc) materials have been calclllated from the quasiharmonic (QH) theory, the lowest order (A2 ) perturbation theory (PT) and a recently proposed Green's function (GF) method by Shukla and Hiibschle. The latter method includes certain anharmonic effects to all orders of anharmonicity. In order to determine the effect of the range of the interatomic interaction upon the anharmonic contributions to the MSD we have carried out our calculations for a Lennard-Jones (L-J) solid in the nearest-neighbour (NN) and next-nearest neighbour (NNN) approximations. These results can be presented in dimensionless units but if the NN and NNN results are to be compared with each other they must be converted to that of a real solid. When this is done for Xe, the QH MSD for the NN and NNN approximations are found to differ from each other by about 2%. For the A2 and GF results this difference amounts to 8% and 7% respectively. For the NN case we have also compared our PT results, which have been calculated exactly, with PT results calculated using a frequency-shift approximation. We conclude that this frequency-shift approximation is a poor approximation. We have calculated the MSD of five alkali metals, five bcc transition metals and seven fcc transition metals. The model potentials we have used include the Morse, modified Morse, and Rydberg potentials. In general the results obtained from the Green's function method are in the best agreement with experiment. However, this improvement is mostly qualitative and the values of MSD calculated from the Green's function method are not in much better agreement with the experimental data than those calculated from the QH theory. We have calculated the phonon dispersion curves (PDC's) of Na and Cu, using the 4 parameter modified Morse potential. In the case of Na, our results for the PDC's are in poor agreement with experiment. In the case of eu, the agreement between the tlleory and experiment is much better and in addition the results for the PDC's calclliated from the GF method are in better agreement with experiment that those obtained from the QH theory.
Resumo:
We have calculated the equation of state and the various thermodynamic properties of monatomic fcc crystals by minimizing the Helmholtz free energy derived in the high temperature limit for the quasiharmonic theory, QH, and the lowest-order (cubic and quartic), 'A2, anharmonic terms of the perturbation theory, PT. The total energy in each case is obtained by adding the static energy. The calculation of the thermal properties was carried out for a nearest-neighbour central-force model of the fcc lattice by means of the appropriate thermodynamic relations. We have calculated the lattice constant, the thermal expansion, the coefficient of volume expansion, the specific heat at constant volume and at constant pressure, the isothermal and adiabatic bulk moduli, and the Griineisen parameter, for the rare-gas solids Kr and Xe, and gold. Morse potential and modified Morse potential were each used to represent the atomic interaction for the three fcc materials. For most of the calculated thermodynamic properties from the QH theory, the results for Kr and Xe with the modified Morse potential show an improvement over the results for the Morse potential when compared with the experimental data. However, the results of the 'A 2 equation of state with the modified Morse potential are in good agreement with experiment only in the case of the specific heat at constant volume and at constant pressure. For Au we have calculated the lattice contribution from the QH and 'A 2 PT and the electronic contribution to the thermal properties. The electronic contribution was taken into account by using the free electron model. The results of the thermodynamic properties calculated with the modified Morse potential were similar to those obtained with the Morse potential. U sing the minimized equation of state we also calculated the Mossbauer recoilless fraction for Kr and Xe and the Debye-Waller factor (DWF) for Pb, AI, eu, Ag, and Au. The Mossbauer recoilless fraction was obtained for the above two potentials and Lennard-Jones potential. The L-J potential gives the best agreement with experiment for Kr. No experimental data exists for Xe. At low temperature the calculated DWF results for Pb, AI, and eu show a good agreement with experimental values, but at high temperature the experimental DWF results increase very rapidly. For Ag the computed values were below the expected results at all temperatures. The DWF results of the modified Morse potential for Pb, AI, eu and Ag were slightly better than those of the Morse potential. In the case of Au the calculated values were in poor agreement with experimental results. We have calculated the quasiharmonic phonon dispersion curves for Kr, Xe, eu, Ag, and Au. The calculated and experimental results of the frequencies agree quite well for all the materials except for Au where the longitudinal modes show serious discrepancies with the experimental results. In addition, the two lowest-order anharmonic contributions to the phonon frequency were derived using the Green's function method. The A 2 phonon dispersion curves have been calculated only for eu, and the results were similar to those of the QH dispersion curves. Finally, an expression for the Griineisen parameter "( has been derived from the anharmonic frequencies, and calculated for these materials. The "( results are comparable with those obtained from the thermodynamic definition.
Resumo:
Volume(density)-independent pair-potentials cannot describe metallic cohesion adequately as the presence of the free electron gas renders the total energy strongly dependent on the electron density. The embedded atom method (EAM) addresses this issue by replacing part of the total energy with an explicitly density-dependent term called the embedding function. Finnis and Sinclair proposed a model where the embedding function is taken to be proportional to the square root of the electron density. Models of this type are known as Finnis-Sinclair many body potentials. In this work we study a particular parametrization of the Finnis-Sinclair type potential, called the "Sutton-Chen" model, and a later version, called the "Quantum Sutton-Chen" model, to study the phonon spectra and the temperature variation thermodynamic properties of fcc metals. Both models give poor results for thermal expansion, which can be traced to rapid softening of transverse phonon frequencies with increasing lattice parameter. We identify the power law decay of the electron density with distance assumed by the model as the main cause of this behaviour and show that an exponentially decaying form of charge density improves the results significantly. Results for Sutton-Chen and our improved version of Sutton-Chen models are compared for four fcc metals: Cu, Ag, Au and Pt. The calculated properties are the phonon spectra, thermal expansion coefficient, isobaric heat capacity, adiabatic and isothermal bulk moduli, atomic root-mean-square displacement and Gr\"{u}neisen parameter. For the sake of comparison we have also considered two other models where the distance-dependence of the charge density is an exponential multiplied by polynomials. None of these models exhibits the instability against thermal expansion (premature melting) as shown by the Sutton-Chen model. We also present results obtained via pure pair potential models, in order to identify advantages and disadvantages of methods used to obtain the parameters of these potentials.