2 resultados para Electromagnetic interference.

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cognitive control involves the ability to flexibly adjust cognitive processing in order to resist interference and promote goal-directed behaviour. Although frontal cortex is considered to be broadly involved in cognitive control, the mechanisms by which frontal brain areas implement control functions are unclear. Furthermore, aging is associated with reductions in the ability to implement control functions and questions remain as to whether unique cortical responses serve a compensatory role in maintaining maximal performance in later years. Described here are three studies in which electrophysiological data were recorded while participants performed modified versions of the standard Sternberg task. The goal was to determine how top-down control is implemented in younger adults and altered in aging. In study I, the effects of frequent stimulus repetition on the interference-related N450 were investigated in a Sternberg task with a small stimulus set (requiring extensive stimulus resampling) and a task with a large stimulus set (requiring no stimulus resampling).The data indicated that constant stimulus res amp ling required by employing small stimulus sets can undercut the effect of proactive interference on the N450. In study 2, younger and older adults were tested in a standard version of the Sternberg task to determine whether the unique frontal positivity, previously shown to predict memory impairment in older adults during a proactive interference task, would be associated with the improved performance when memory recognition could be aided by unambiguous stimulus familiarity. Here, results indicated that the frontal positivity was associated with poorer memory performance, replicating the effect observed in a more cognitively demanding task, and showing that stimulus familiarity does not mediate compensatory cortical activations in older adults. Although the frontal positivity could be interpreted to reflect maladaptive cortical activation, it may also reflect attempts at compensation that fail to fully ameliorate agerelated decline. Furthermore, the frontal positivity may be the result of older adults' reliance on late occurring, controlled processing in contrast to younger adults' ability to identify stimuli at very early stages of processing. In the final study, working memory load was manipulated in the proactive interference Sternberg task in order to investigate whether the N450 reflects simple interference detection, with little need for cognitive resources, or an active conflict resolution mechanism that requires executive resources to implement. Independent component analysis was used to isolate the effect of interference revealing that the canonical N450 was based on two dissociable cognitive control mechanisms: a left frontal negativity that reflects active interference resolution, , but requires executive resources to implement, and a right frontal negativity that reflects global response inhibition that can be relied on when executive resources are minimal but at the cost of a slowed response. Collectively, these studies advance understanding of the factors that influence younger and older adults' ability to satisfy goal-directed behavioural requirements in the face of interference and the effects of age-related cognitive decline.