3 resultados para Electroencephalography.
em Brock University, Canada
Resumo:
The oscillation of neuronal circuits reflected in the EEG gamma frequency may be fundamental to the perceptual process referred to as binding (the integration of various thoughts and perceptions into a coherent picture). The aim of our study was to expand our knowledge of the developmental course ofEEG gamma in the auditory modality. 2 We investigated EEG 40 Hz gamma band responses (35.2 to 43.0 Hz) using an auditory novelty oddball paradigm alone and with a visual-number-series distracter task in 208 participants as a function of age (7 years to adult) at 9 sites across the sagital and lateral axes (F3, Fz, F4, C3, Cz, C4, P3, Pz, P4). Gamma responses were operationally defined as change in power or a change in phase synchrony level from baseline within two time windows. The evoked gamma response was defined as a significant change from baseline occurring between 0 to 150 ms after stimulus onset; the induced gamma response was measured from 250 to 750 ms after stimulus onset. A significant evoked gamma band response was found when measuring changes in both power and phase synchrony. The increase in both measures was maximal at frontal regions. Decreases in both measures were found when participants were distracted by a secondary task. For neither measure were developmental effects noted. However, evoked gamma power was significantly enhanced with the presentation of a novel stimulus, especially at the right frontal site (F4); frontal evoked gamma phase synchrony also showed enhancement for novel stimuli but only for our two oldest age groups (16-18 year olds and adults). Induced gamma band responses also varied with task-dependent cognitive stimulus properties. In the induced gamma power response in all age groups, target stimuli generated the highest power values at the parietal region, while the novel stimuli were always below baseline. Target stimuli increased induced synchrony in all regions for all participants, but the novel stimulus selectively affected participants dependent on their age and gender. Adult participants, for example, exhibited a reduction in gamma power, but an increase in synchrony to the novel stimulus within the same region. Induced gamma synchrony was more sensitive to the gender of the participant than was induced gamma power. While induced gamma power produced little effects of age, gamma synchrony did have age effects. These results confirm that the perceptual process which regulates gamma power is distinct from that which governs the synchronization for neuronal firing, and both gamma power and synchrony are important factors to be considered for the "binding" hypothesis. However, there is surprisingly little effect of age on the absolute levels of or distribution of EEG gamma in the age range investigated.
Resumo:
This study explored changes in scalp electrophysiology across two Working Memory (WM) tasks and two age groups. Continuous electroencephalography (EEG) was recorded from 18 healthy adults (18-34 years) and 12 healthy adolescents (14-17) during the performance of two Oculomotor Delayed Response (ODR) WM tasks; (i.e. eye movements were the metric of motor response). Delay-period, EEG data in the alpha frequency was sampled from anterior and parietal scalp sites to achieve a general measure of frontal and parietal activity, respectively. Frontal-parietal, alpha coherence was calculated for each participant for each ODR-WM task. Coherence significantly decreased in adults moving across the two ODR tasks, whereas, coherence significantly increased in adolescents moving across the two ODR tasks. The effects of task in the adolescent and adult groups were large and medium, respectively. Within the limits of this study, the results provide empirical support that WM development during adolescence include complex, qualitative, change.
Resumo:
Activity of the medial frontal cortex (MFC) has been implicated in attention regulation and performance monitoring. The MFC is thought to generate several event-related potential (ERPs) components, known as medial frontal negativities (MFNs), that are elicited when a behavioural response becomes difficult to control (e.g., following an error or shifting from a frequently executed response). The functional significance of MFNs has traditionally been interpreted in the context of the paradigm used to elicit a specific response, such as errors. In a series of studies, we consider the functional similarity of multiple MFC brain responses by designing novel performance monitoring tasks and exploiting advanced methods for electroencephalography (EEG) signal processing and robust estimation statistics for hypothesis testing. In study 1, we designed a response cueing task and used Independent Component Analysis (ICA) to show that the latent factors describing a MFN to stimuli that cued the potential need to inhibit a response on upcoming trials also accounted for medial frontal brain responses that occurred when individuals made a mistake or inhibited an incorrect response. It was also found that increases in theta occurred to each of these task events, and that the effects were evident at the group level and in single cases. In study 2, we replicated our method of classifying MFC activity to cues in our response task and showed again, using additional tasks, that error commission, response inhibition, and, to a lesser extent, the processing of performance feedback all elicited similar changes across MFNs and theta power. In the final study, we converted our response cueing paradigm into a saccade cueing task in order to examine the oscillatory dynamics of response preparation. We found that, compared to easy pro-saccades, successfully preparing a difficult anti-saccadic response was characterized by an increase in MFC theta and the suppression of posterior alpha power prior to executing the eye movement. These findings align with a large body of literature on performance monitoring and ERPs, and indicate that MFNs, along with their signature in theta power, reflects the general process of controlling attention and adapting behaviour without the need to induce error commission, the inhibition of responses, or the presentation of negative feedback.