3 resultados para Ecological –systemic approach
em Brock University, Canada
Resumo:
Adaptive systems of governance are increasingly gaining attention in respect to complex and uncertain social-ecological systems. Adaptive co-management is one strategy to make adaptive governance operational and holds promise with respect to community climate change adaptation as it facilitates participation and learning across scales and fosters adaptive capacity and resilience. Developing tools which hasten the realization of such approaches are growing in importance. This paper describes explores the Social Ecological Inventory (SEI) as a tool to 'prime' a regional climate change adaptation network. The SEI tool draws upon the social-ecological systems approach in which social and ecological systems are considered linked. SEIs bridge the gap between conventional stakeholder analysis and biological inventories and take place through a six phase process. A case study describes the results of applying an SEI to prime an adaptive governance network for climate change adaptation in the Niagara Region of Canada. Lessons learned from the case study are discussed and highlight how the SEI catalyzed the adaptive co-management process in the case. Future avenues for SEIs in relation to climate change adaptation emerge from this exploratory work and offer opportunities to inform research and adaptation planning.
Resumo:
The current set of studies was conducted to examine the cross-race effect (CRE), a phenomenon commonly found in the face perception literature. The CRE is evident when participants display better own-race face recognition accuracy than other-race recognition accuracy (e.g. Ackerman et al., 2006). Typically the cross-race effect is attributed to perceptual expertise, (i.e., other-race faces are processed less holistically; Michel, Rossion, Han, Chung & Caldara, 2006), and the social cognitive model (i.e., other-race faces are processed at the categorical level by virtue of being an out-group member; Hugenberg, Young, Bernstein, & Sacco, 2010). These effects may be mediated by differential attention. I investigated whether other-race faces are disregarded and, consequently, not remembered as accurately as own-race (in-group) faces. In Experiment 1, I examined how the magnitude of the CRE differed when participants learned individual faces sequentially versus when they learned multiple faces simultaneously in arrays comprising faces and objects. I also examined how the CRE differed when participants recognized individual faces presented sequentially versus in arrays of eight faces. Participants’ recognition accuracy was better for own-race faces than other-race faces regardless of familiarization method. However, the difference between own- and other-race accuracy was larger when faces were familiarized sequentially in comparison to familiarization with arrays. Participants’ response patterns during testing differed depending on the combination of familiarization and testing method. Participants had more false alarms for other-race faces than own-race faces if they learned faces sequentially (regardless of testing strategy); if participants learned faces in arrays, they had more false alarms for other-race faces than own-races faces if ii i they were tested with sequentially presented faces. These results are consistent with the perceptual expertise model in that participants were better able to use the full two seconds in the sequential task for own-race faces, but not for other-race faces. The purpose of Experiment 2 was to examine participants’ attentional allocation in complex scenes. Participants were shown scenes comprising people in real places, but the head stimuli used in Experiment 1 were superimposed onto the bodies in each scene. Using a Tobii eyetracker, participants’ looking time for both own- and other-race faces was evaluated to determine whether participants looked longer at own-race faces and whether individual differences in looking time correlated with individual differences in recognition accuracy. The results of this experiment demonstrated that although own-race faces were preferentially attended to in comparison to other-race faces, individual differences in looking time biases towards own-race faces did not correlate with individual differences in own-race recognition advantages. These results are also consistent with perceptual expertise, as it seems that the role of attentional biases towards own-race faces is independent of the cognitive processing that occurs for own-race faces. All together, these results have implications for face perception tasks that are performed in the lab, how accurate people may be when remembering faces in the real world, and the accuracy and patterns of errors in eyewitness testimony.
Resumo:
Many species of Anopheles mosquitoes (Diptera: Culicidae) are now recognized as species complexes whose members are often indistinguishable morphologically but identifiable based on ecological, genetic, or behavioural data. Because the members of species complexes often differ in their vector potential, accurate identification of vector species is essential for successful mosquito control. To investigate the cryptic species status of Anopheles mosquitoes in Canada, specimens were collected from across the country and examined using morphological, molecular, and ecological data. Six of the seven traditionally recognised species from Canada were collected from locations in British Columbia, Quebec, Newfoundland and Labrador, and throughout Ontario, including Anopheles barberi, An. earlei, An. freeborni, An. punctipennis, An. quadrimaculatus s.l., and An. walkeri. Variation in polymorphic traits within An. earlei, An. punctipennis, and An. quadrimaculatus s.l. were quantified and egg morphology examined using scanning electron microscopy. Morphological identification of adult and larval specimens suggested that two described cryptic species, An. perplexens and An. smaragdinus, were present in Canada. DNA sequence data were analysed for evidence of cryptic species using three molecular markers: COl, ITS2, and ITS!. Intraspecific COl variation was very low in most species «1 %), except for An. punctipennis with 2% sequence divergence between those from British Columbia (BC) and Ontario (ON), and An. walkeri with 7% sequence divergence between populations from Manitoulin Island (NO) and Long Point Provincial Park (LP). Similar patterns were also seen using ITS2 and ITS 1. Therefore, molecular data revealed the presence of two putative cryptic species within two species examined (i.e., An. walkeri and An. punctipennis), corresponding to collection location (i.e., NO vs. LP and BC vs. ON, respectively). Surprisingly, there was no molecular support for the presence of either An. perplexens or An. smaragdinus in Canada despite the morphological assessments. Ecological data from all collection sites were recorded and are available in an online database designed to manage all collection and identification data. Current bionomic information, including regional abundance, larval habitat, and species associations, was determined for each species. This multidisciplinary study of Anopheles mosquitoes is the first detailed investigation of these potential disease vectors in Canada and demonstrates the importance of an integrated approach to anopheline systematics that includes molecular data.