3 resultados para EMG signal amplitude

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

This study evaluated sex-related differences in the tibialis anterior (TA) surface electromyography (EMG) to force relationship. One-hundred participants (50 males and 50 females) performed three isometric contractions at 20, 40, 60, 80, and 100% of maximal voluntary contraction (MVC) in an apparatus designed to isolate the action of the dorsiflexors. The surface EMG signal was amplified (lOOOx), band-pass filtered (10-500Hz), and sampled at 2048 Hz. The load cell signal was low-passed filtered at 100 Hz and sampled at the same rate. Males were stronger than females {P <0.05). However, there was no significant difference in root-mean-square (RMS) values between sexes {P <0.05). Both sexes exhibited a quadratic increase in RMS across force levels (P <0.05). The mean power frequency (MNF) for males was greater than for females {P <0.05). Males and females exhibited a linear increase in both frequency measures up to 80% of MVC (P <0.05). Between 80 and 100% MVC, the frequency values for the females plateaued while males showed a decrease {P <0.05). The magnitude of the difference in MNF between males and females was consistent with sex-specific TA physiology. In general, the pattern of means for RMS and MNF between males and females revealed no sex-related differences in the surface EMG/force relationship. We therefore conclude that there are no sex-related differences in the gradation of muscle force.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electromyographic threshold (EMGTh), defined as an upward inflexion in the rising EMG signal during progressive exercise, is thought to reflect the onset of increased type-II MU recruitment. The study’s objective was to compare the relative exercise intensity at which the EMGTh occurs in boys vs. men. Participants included 21 men (23.4±4.1 yrs) and 23 boys (11.1±1.1 yrs). Ramped cycle-ergometry was conducted to volitional exhaustion with surface EMG recorded from the vastus lateralis muscles. The EMGTh was mathematically determined using a composite of both legs. EMGTh was detected in 95.2% of the men and in 78.3% of the boys (χ2(1, n=44) =2.69, p =.10). The boys’ EMGTh was significantly higher than the men’s (86.4±9.6 vs. 79.7±10.0% of peak power-output at exhaustion; p <.05). These findings suggest that boys activate their type-II MUs to a lesser extent than men during progressive exercise and support the hypothesis of differential child–adult MU activation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Indwelling electromyography (EMG) has great diagnostic value but its invasive and often painful characteristics make it inappropriate for monitoring human movement. Spike shape analysis of the surface electromyographic signal responds to the call for non-invasive EMG measures for monitoring human movement and detecting neuromuscular disorders. The present study analyzed the relationship between surface and indwelling EMG interference patterns. Twenty four males and twenty four females performed three isometric dorsiflexion contractions at five force levels from 20% to maximal force. The amplitude measures increased differently between electrode types, attributed to the electrode sensitivity. The frequency measures were different between traditional and spike shape measures due to different noise rejection criteria. These measures were also different between surface and indwelling EMG due to the low-pass tissue filtering effect. The spike shape measures, thought to collectively function as a means to differentiate between motor unit characteristics, changed independent of one another.