7 resultados para ELECTROACTIVE SOLUTES

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The adapted metabolic response of commercial wine yeast under prolonged exposure to concentrated solutes present in Icewine juice is not fully understood. Presently, there is no information regarding the transcriptomic changes in gene expression associated with the adaptive stress response ofwine yeast during Icewine fermentation compared to table wine fermentation. To understand how and why wine yeast respond differently at the genomic level and ultimately at the metabolic level during Icewine fermentation, the focus ofthis project was to identify and compare these differences in the wine yeast Saccharomyces cerevisiae KI-Vll16 using cDNA microarray technology during the first five days of fermentation. Significant differences in yeast gene expression patterns between fermentation conditions were correlated to differences in nutrient utilization and metabolite production. Sugar consumption, nitrogen usage and metabolite levels were measured using enzyme assays and HPLC. Also, a small subset of differentially expressed genes was verified using Northern analysis. The high osmotic stress experienced by wine yeast throughout Icewine fermentation elicited changes in cell growth and metabolism correlating to several fermentation difficulties, including reduced biomass accumulation and fermentation rate. Genes associated with carbohydrate and nitrogen transport and metabolism were expressed at lower levels in Icewine juice fermenting cells compared to dilute juice fermenting cells. Osmotic stress, not nutrient availability during Icewine fermentation appears to impede sugar and nitrogen utilization. Previous studies have established that glycerol and acetic acid production are increased in yeast during Icewine fermentation. A gene encoding for a glycerollW symporter (STL1) was found to be highly expressed up to 25-fold in the i Icewine juice condition using microarray and Northern analysis. Active glycerol transport by yeast under hyperosmotic conditions to increase cytosolic glycerol concentration may contribute to reduced cell growth observed in the Icewine juice condition. Additionally, genes encoding for two acetyl CoA synthetase isoforms (ACSl and ACS2) were found to be highly expressed, 19- and II-fold respectively, in dilute juice fermenting cells relative to the Icewine juice condition. Therefore, decreased conversion of acetate to acetyl-CoA may contribute to increased acetic acid production during Icewine fermentation. These results further help to explain the response of wine yeast as they adapt to Icewine juice fermentation. ii

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maximum production rates ofs and decay kinetics for the hydrated electron, the indolyl neutral radical and the indole triplet state have been obtained in the microsecond, broadband (X > 260 nm) flash photolysis of helium-saturated, neutral aqueous solutions of indole, in the absence and in the presence of the solutes NaBr, BaCl2*2H20 and CdSCV Fluorescence spectra and fluorescence lifetimes have also been obtained in the absence and in the presence of the above solutes, The hydrated electron is produced monophotonically and biphotonically at an apparent maximum rate which is increased by BaCl2*2H20 and decreased by NaBr and CdSOif. The neutral indolyl radical may be produced monophotonically and biphotonically or strictly monophotonically at an apparent maximum rate which is increased by NaBr and CdSO^ and is unaffected by BaCl2*2H20. The indole triplet state is produced monophotonically at a maximum rate which is increased by all solutes. The hydrated electron decays by pseudo first order processes, the neutral indolyl radical decays by second order recombination and the indole triplet state decays by combined first and second order processes. Hydrated electrons are shown to react with H , H2O, indole, Na and Cd"*""1"". No evidence has been found for the reaction of hydrated electrons with Ba . The specific rate of second order neutral indolyl radical recombination is unaffected by NaBr and BaCl2*2H20, and is increased by CdSO^. Specific rates for both first and second order triplet state decay processes are increased by all solutes. While NaBr greatly reduced the fluorescence lifetime and emission band intensity, BaCl2*2H20 and CdSO^ had no effect on these parameters. It is suggested that in solute-free solutions and in those containing BaCl2*2H20 and CdSO^, direct excitation occurs to CTTS states as well as to first excited singlet states. It is further suggested that in solutions containing NaBr, direct excitation to first excited singlet states predominates. This difference serves to explain increased indole triplet state production (by ISC from CTTS states) and unchanged fluorescence lifetimes and emission band intensities in the presence of BaCl2*2H20 and CdSOt^., and increased indole triplet state production (by ISC from S^ states) and decreased fluorescence lifetime and emission band intensity in the presence of NaBr. Evidence is presented for (a) very rapid (tx ^ 1 us) processes involving reactions of the hydrated electron with Na and Cd which compete with the reformation of indole by hydrated electron-indole radical cation recombination, and (b) first and second order indole triplet decay processes involving the conversion of first excited triplet states to vibrationally excited ground singlet states.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In the present thesis, the role of hydration during the glucose induced conformational change of hexokinase is investigated. This is accomplished by applying the osmotic stress technique. The osmotic stress technique is founded on varying of the activity of water in a system in order to determine ifs effects. This is accomplished by adding inert solute molecules that are excluded from the system under study. The solute molecules used within the present investigation are Polyethylene glycols (PEGs). PEGs aid in the removal of water from hexokinase by exerting osmotic pressure. The osmotic pressures of the PEG solutions are also measured with both vapour pressure osmometry and secondary osmometry with phospholipids. An interesting discovery is made in that the osmotic pressures of PEG and co-solute solutions are non-additive. This indicates that PEG concentrates co-solutes in solution by making a certain proportion of the water inaccessible. Glucose binding was measured fluorometrically and the glucose equilibrium dissociation constant (GEDC) of hexokinase is measured in solutions containing the different MW PEGs. Changes in the sensitivity of the glucose affinity with osmotic pressure allows the calculation of the change in the numbers of polymer-inaccessible water molecules upon the binding of glucose to hexokinase ~Nw. It was determined the ~Nw decreases with increases in osmotic pressure in the presence of all MW PEGs. ~Nw decreases from values between 45-290 water molecules at low pressure to approximately 15 at high pressure. There is also a molecular weight dependence observed. There are large decreases in ~Nw with osmotic pressure in the presence of PEGs above MW 1000. However, below MW 1500 changes in ~Nw with osmotic pressure are relatively small. These findings are interpreted with respect to two possible mechanisms involving changes in the conformation of hexokinase u~der osmotic pressure and the access of the PEG molecules to water surrounding hexokinase.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several inorganic substances (e.g., C£ , Mg , Ca , H ) are potent negative modulators of hemoglobin-oxygen affinity. To evaluate the possibility that potentially adaptive changes in the red cell ionic environment of hemoglobin may take place during acclimation of fishes to increased environmental temperature, hematological status (hemoglobin, hematocrit, red cell numbers, mean erythrocytic volume and hemoglobin content), plasma + + 2+ 2+ and packed red cell electrolyte levels (Na , K , Ca , Mg , C£ ) were evaluated in summer and winter populations of the stenothermal rainbow trout, Salmo gairdneri, following acclimation to 2°, 10°, 18°C, and in a spring population of eurythermal carp, Cyprinus carpio, held at 2°, 16° and 30°C. From these data cell ion concentrations and ion:hemoglobin ratios were estimated. In view of the role of red cell carbonic anhydrase in the reductions of blood C02 tensions and the recruitment of Na and C£~ lost by fishes, a preliminary investigation of thermoacclimatory changes in the activity of this system in rainbow trout erythrocytes was conducted. Few changes in hematological status were encountered following acclimation. There was, however, some evidence of weight-specific differential hematological response in carp. This lead to markedly greater increases in hemoglobin, hematocrit and red cell numbers in smaller rather than in larger specimens at higher temperatures; variations which were 2+ well correlated with changes in plasma Ca . Plasma composition in summer trout was not altered by acclimation. In winter trout plasma Na and K increased at higher temperatures. Carp were characterized by increases in plasma calcium, and reductions in sodium and magnesium under these conditions. Several significant seasonal differences in plasma ion levels were observed in the trout. (n) In trout, only erythrocytic K and K :Hb were altered by acclimation, rising at higher temperatures. In carp Na , Na :Hb, C£~ and C£~:Hb in- 2+ 2+ creased with temperature, while Mg and Mg :Hb declined. Changes in overall ionic composition in carp red cells were consistent with increases in H content. In both species significant reciprocal variations in C£~ 2+ - + and Mg were found. In mammalian systems increases in C£ and H reduce hemoglobin-oxygen affinity by interaction with hemoglobin. Reduction in 2+ 2+ Mg maximizes organophosphate modulator availability by decreasing ATP»Mg complex formation. Thus, the changes observed may be of adaptive value in reducing hemoglobin-oxygen affinity, and facilitating oxygen release to cells at higher temperatures. Trout appear to maintain a high chloridelow magnesium state over the entire thermal tolerance zone. Carp, however, achieved this state only at higher temperatures. In both species mean erythrocytic volume was decreased at higher temperatures and this may facilitate branchial oxygen loading. Since mean erythrocytic volume was inversely related to red cell ion content, it is hypothesized that reductions in cell volume are achieved by export of some unidentified solute or solutes. Variations in the carbonic anhydrase activity that could be attributed to the thermoacclimatory process were quite modest. On the other hand, assays performed at the temperature of acclimation showed a large temperature effect where under in vivo conditions of temperature fish acclimated to higher temperatures might be expected to have higher activities. Furthermore, since hematocrit increased with temperature in these fish, while carbonic anhydrase is present only in the erythrocyte, the whole blood levels of this enzyme are expected to increase and further augment the temperature effect. This, in turn, could aid in the reduction of C02 (111) tension and increase the production of H and HC0~~ used in the active uptake of Na and C£ at higher temperatures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of biological molecules with water is an important determinant of structural properties both in molecular assemblies, and in conformation of individual macromolecules. By observing the effects of manipulating the activity of water (which can be accomplished by limiting its concentration or by adding additional solutes, "osmotic stress"), one can learn something about intrinsic physical properties of biological molecules as well as measure an energetic contribution of closely associated water molecules to overall equilibria in biological reactions. Here two such studies are reported. The first of these examines several species of lysolipid which, while present in relatively low concentrations in biomembranes, have been shown to affect many cellular processes involving membrane-protein or membrane-membrane interactions. Monolayer elastic constants were determined by combining X-ray diffraction and the osmotic stress technique. Spontaneous radii of curvature of lysophosphatidylcholines were determined to be positive and in the range +30A to +70A, while lysophosphatidylethanolamines proved to be essentially flat. Neither lysolipid significantly affected the bending modulus of the monolayer in which it was incorporated. The second study examines the role of water in theprocess of polymerization of actin into filaments. Water activity was manipulated by adding osmolytes and the effect on the equilibrium dissociation constant (measured as the criticalmonomer concentration) was determined. As water activity was decreased, the critical concentration was reduced for Ca-actin but not for Mg-actin, suggesting that 10-12 fewer water molecules are associated with Ca-actin in the polymerized state. Thisunexpectedly small amount of water is discussed in the context of the common structural motif of a nucleotide binding cleft.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Factors involved in the determination of PAHs (16 priority PAHs as an example) and PCBs (10 PCB congeners, representing 10 isomeric groups) by capillary gas chromatography coupled with mass spectrometry (GC/MS, for PAHs) and electron capture detection (GC/ECD , for PCBs) were studied, with emphasis on the effect of solvent. Having various volatilities and different polarities, solvent studied included dichloromethane, acetonitrile, hexan e, cyclohexane, isooctane, octane, nonane, dodecane, benzene, toluene, p-xylene, o-xylene, and mesitylene. Temperatures of the capillary column, the injection port, the GC/MS interface, the flow rates of carrier gas and make-up gas, and the injection volume were optimized by one factor at a time method or simplex optimization method. Under the optimized conditions, both peak height and peak area of 16 PAHs, especially the late-eluting PAHs, were significantly enhanced (1 to 500 times) by using relatively higher boiling point solvents such as p-xylene and nonane, compared with commonly used solvents like benzene and isooctane. With the improved sensitivity, detection limits of between 4.4 pg for naphthalene and 30.8 pg for benzo[g,h,i]perylene were obtained when p-xylene was used as an injection solvent. Effect of solvent on peak shape and peak intensity were found to be greatly dependent on temperature parameters, especially the initial temperature of the capillary column. The relationship between initial temperature and shape of peaks from 16 PAHs and 10 PCBs were studied and compared when toluene, p-xylene, isooctane, and nonane were used as injection solvents. If a too low initial temperature was used, fronting or split of peaks was observed. On the other hand, peak tailing occurred at a too high initial column temperature. The optimum initial temperature, at which both peak fronting and tailing were avoided and symmetrical peaks were obtained, depended on both solvents and the stationary phase of the column used. On a methyl silicone column, the alkane solvents provided wider optimum ranges of initial temperature than aromatic solvents did, for achieving well-shaped symmetrical GC peaks. On a 5% diphenyl: 1% vinyl: 94% dimethyl polysiloxane column, when the aromatic solvents were used, the optimum initial temperature ranges for solutes to form symmetrical peaks were improved to a similar degree as those when the alkanes were used as injection solvents. A mechanism, based on the properties of and possible interactions among the analyte, the injection solvent, and the stationary phase of the capillary column, was proposed to explain these observations. The effect of initial temperature on peak height and peak area of the 16 PAHs and the 10 PCBs was also studied. The optimum initial temperature was found to be dependent on the physical properties of the solvent used and the amount of the solvent injected. Generally, from the boiling point of the solvent to 10 0C above its boiling point was an optimum range of initial temperature at which cthe highest peak height and peak area were obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Part I - Fluorinated Compounds A method has been developed for the extraction, concentration, and determination of two unique fluorinated compounds from the sediments of Lake Ontario. These compounds originated from a common industrial landfill, and have been carried to Lake Ontario by the Niagara River. Sediment samples from the Mississauga basin of Lake Ontario have been evaluated for these compounds and a depositional trend was established. The sediments were extracted by accelerated solvent extraction (ASE) and then underwent clean-up, fractionation, solvent exchange, and were concentrated by reduction under nitrogen gas. The concentrated extracts were analyzed by gas chromatography - electron capture negative ionization - mass spectrometry. The depositional profile determined here is reflective of the operation of the landfill and shows that these compounds are still found at concentrations well above background levels. These increased levels have been attributed to physical disturbances of previously deposited contaminated sediments, and probable continued leaching from the dumpsite. Part II - Polycyclic Aromatic Hydrocarbons Gas chromatography/mass spectrometry is the most common method for the determination of polycyclic aromatic hydrocarbons (PAHs) from various matrices. Mass discrimination of high-boiling compounds in gas chromatographic methods is well known. The use of high-boiling injection solvents shows substantial increase in the response of late-eluting peaks. These solvents have an increased efficiently in the transfer of solutes from the injector to the analytical column. The effect of I-butanol, I-pentanol, cyclopentanol, I-hexanol, toluene and n-octane, as injection solvents, was studied. Higher-boiling solvents yield increased response for all PAHs. I -Hexanol is the best solvent, in terms of P AH response, but in this solvent P AHs were more susceptible to chromatographic problems such as peak splitting and tailing. Toluene was found to be the most forgiving solvent in terms of peak symmetry and response. It offered the smallest discrepancies in response, and symmetry over a wide range of initial column temperatures.