4 resultados para Dorsal
em Brock University, Canada
Resumo:
The aim of this study was to investigate the neural correlates of operant conditioning in a semi-intact preparation of the pond snail, Lymnaea stagnalis. Lymnaea learns, via operant conditioning, to reduce its aerial respiratory behaviour in response to an aversive tactile stimulus to its open pneumostome. This thesis demonstrates the successful conditioning of na'ive semiintact preparations to show learning in the dish. Furthermore, these conditioned preparations show long-term memory that persists for at least 18 hours. As the neurons that generate this behaviour have been previously identified I can, for the first time, monitor neural activity during both learning and long-term memory consolidation in the same preparation. In particular, I record from the respiratory neuron Right Pedal Dorsal 1 (RPeD 1) which is part of the respiratory central pattern generator. In this study, I demonstrate that preventing RPeDl impulse activity between training sessions reduces the number of sessions needed to produce long-term memory in the present semi-intact preparation.
Resumo:
Intracerebroventricular (ICV) administration of bombesin (BN) induces a
syndrome characterized by stereotypic locomotion and grooming,
hyperactivity and sleep elimination, hyperglycemia and hypothermia,
hyperhemodynamics, feeding inhibition, and gastrointestinal function
changes. Mammalian BN-like peptides (MBNs), e.g. gastrin-releasing
peptide (GRP), Neuromedin C (NMC), and Neuromedin B (NMB), have been
detected in the central nervous system. Radio-labeled BN binds to specific
sites in discrete cerebral regions. Two specific BN receptor subtypes (GRP
receptor and NMB receptor) have been identified in numerous brain regions.
The quantitative 2-[14C]deoxyglucose ([14C]20G) autoradiographic
method was used to map local cerebral glucose utilization (LCGU) in the
rat brain following ICV injection of BN (vehicle, BN O.1Jlg, O.5Jlg). At each
dose, experiments were conducted in freely moving or restrained
conditions to determine whether alterations in cerebral function were the
result of BN central administration, or were the result of BN-induced
motor stereotypy. The anteroventral thalamic nucleus (AV) (p=O.029),
especially its ventrolateral portion (AVVL) (p
Resumo:
The medial prefrontal cortex (mPFC) is involved in performance-monitoring and has been implicated in the generation of several electrocortical responses associated with self-regulation. The error-related negativity (ERN), the inhibitory Nogo N2 (N2), and the feedback-related negativity (FRN) are event-related potential (ERP) components which reflect mPFC activity associated with feedback to behavioural (ERN, N2) and environmental (FRN) consequences. Our main goal was to determine whether or not rnPFC activation varies as a function of motivational context (e.g., those involving performance-related incentives) or the use of internally versus externally generated feedback signals (i.e., errors). Additionally, we assessed medial prefrontal activity in relation to individual differences in personality and temperament. Participants completed a combination of tasks in which performance-related incentives were associated with task performance and feedback generated from internal versus external responses. MPFC activity was indexed using both ERP scalp voltage peaks and intracerebral current source density (CSD) of dorsal and ventral regions. Additionally, participants completed several questionnaires assessing personality and temperament styles. Given previous studies have shown that enhanced mPFC activity to loss (or negative) feedback, we expected that activity in the mPFC would generally be greater during the Loss condition relative to the Win condition for both the ERN and N2. Also, due to the evidence that the (vmPFC) is engaged in arousing contexts, we hypothesized that activity in the ventromedial prefrontal cortex (vmPFC) would be greater than activity in the dorsomedial prefrontal cortex (dmPFC), especially in the Loss condition of the GoNogo task (ERN). Similarly, loss feedback in the BART (FRN) was expected to engage the vmPFC more than the dmPFC. Finally, we predicted that persons rating themselves as more willing to engage in approach-related behaviours or to exhibit rigid cognitive styles would show reduced activity of the mPFC. Overall, our results emphasize the role of affective evaluations of behavioural and environmental consequences when self-regulating. Although there were no effects of context on brain activity, our data indicate that, during the time of the ERN and N2 on the MW Go-Nogo task and the FRN on the BART, the vrnPFC was more active compared to the dmPFC. Moreover, regional recruitment in the mPFC was similar across internally (ERN) and externally (FRN) generated errors signals associated with loss feedback, as reflected by relatively greater activity in the vmPFC than the dmPFC. Our data also suggest that greater activity in the mPFC is associated with better inhibitory control, as reflected by both scalp and CSD measures. Additionally, deactivation of the subgenual anterior cingulate cortex (sgACC) and lower levels of self-reported positive affect were both related to increased voluntary risk-taking on the BART. Finally, persons reporting higher levels of approach-related behaviour or cognitive rigidity showed reduced activity of the mPFC. These results are in line with previous research emphasizing that affect/motivation is central to the processes reflected by mediofrontal negativities (MFNs), that the vmPFC is involved in regulating demands on motivational/affective systems, and that the underlying mechanisms driving these functions vary across both individuals and contexts.
Resumo:
The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.