2 resultados para Domenico Fontana (1543-1607)
em Brock University, Canada
Resumo:
Western law schools are suffering from an identity and moral crisis. Many of the legal profession's problems can be traced to the law school environment, where students are taught to reason and practice in ways that are often at odds with their own personalities and values and even with generally accepted psychologically healthy practices. The idealism, ethic of care, and personal moral compasses of many students become eroded and even lost in the present legal education system. Formalism, rationalism, elitism, and big business values have become paramount. In such a moment of historical crisis, there exists the opportunity to create a new legal education story. This paper is a conceptual study of both my own Canadian legal education and the general legal education experience. It examines core problems and critiques of the existing Western legal education organizational and pedagogical paradigm to which Canadian law schools adhere. New approaches with the potential to enrich, humanize, and heal the Canadian law school experience are explored. Ultimately, the paper proposes a legal education system that is more interdisciplinary, theoretically and practically integrated, emotionally intelligent, technologically connected, morally accountable, spiritual, and humane. Specific pedagogical and curricular strategies are suggested, and recommendations for the future are offered. The dehumanizing aspects of the law school experience in Canada have rarely been studied. It is hoped that this thesis will fill a gap in the research and provide some insight into an issue that is of both academic and public importance, since the well-being of law students and lawyers affects the interests of their clients, the general public, and the integrity and future of the entire legal system.
Resumo:
The allometric scaling relationship observed between metabolic rate (MR) and species body mass can be partially explained by differences in cellular MR (Porter & Brand, 1995). Here, I studied cultured cell lines derived from ten mammalian species to determine whether cells propagated in an identical environment exhibited MR scaling. Oxidative and anaerobic metabolic parameters did not scale significantly with donor body mass in cultured cells, indicating the absence of an intrinsic MR setpoint. The rate of oxygen delivery has been proposed to limit cellular metabolic rates in larger organisms (West et al., 2002). As such cells were cultured under a variety of physiologically relevant oxygen tensions to investigate the effect of oxygen on cellular metabolic rates. Exposure to higher medium oxygen tensions resulted in increased metabolic rates in all cells. Higher MRs have the potential to produce more reactive oxygen species (ROS) which could cause genomic instability and thus reduced lifespan. Longer-lived species are more resistant to oxidative stress (Kapahi et al, 1999), which may be due to greater antioxidant and/or DNA repair capacities. This hypothesis was addressed by culturing primary dermal fibroblasts from eight mammalian species ranging in maximum lifespan from 5 to 120 years. Only the antioxidant manganese superoxide dismutases (MnSOD) positively scaled with species lifespan (p<0.01). Oxidative damage to DNA is primarily repaired by the base excision repair (BER) pathway. BER enzyme activities showed either no correlation or as in the case of polymerase p correlated, negatively with donor species (p<0.01 ). Typically, mammalian cells are cultured in a 20% O2 (atmospheric) environment, which is several-fold higher than cells experience in vivo. Therefore, the secondary aim of this study was to determine the effect of culturing mammalian cells at a more physiological oxygen tension (3%) on BER, and antioxidant, enzyme activities. Consistently, standard culture conditions induce higher antioxidant and DNA ba.se excision repair activities than are present under a more physiological oxygen concentration. Therefore, standard culture conditions are inappropriate for studies of oxidative stress-induced activities and species differences in fibroblast DNA BER repair capacities may represent differences in ability to respond to oxidative stress. An interesting outcome firom this study was that some inherent cellular properties are maintained in culture (i.e. stress responses) while others are not (i.e. MR).