4 resultados para Disturbance rejection

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Increased losses of eggs and chicks resulting from human intrusion (investigator or other) into seabird colonies has been well documented. In 1990/91, I studied the effects of investigator disturbance on aggressive behaviour and breeding success of individual pairs of ring-billed gulls nesting at two colonies near Port Colborne, Ontario. The insular colony was on an artificial breakwall, associated with the Welland Ship Canal, approximately 1 km off the north shore of Lake Erie. The mainland colony was adjacent to the canal approximately 1 km east of the breakwall. The frequencies of adult threat and assault behaviours, chick movement and adult attacks on chicks were recorded by continuous scan sampling 30 min prior to, 30 min during and 60 (2 X 30) min after investigator disturbance. The frequency of threat and assault behaviours increased during the period of investigator activity in the colony while the duration of wingpulls and beakpulls decreased. Significantly more chicks ran ("runners") from their natal territories during disturbances and "runners" were more frequently attacked than "territorial" chicks. No chicks were fatally attacked during disturbance and "runners" returned to their natal territories quickly after disturbance. Breeding success was determined for pairs nesting in study plots subjected to two levels of disturbance (normal and moderate). The disturbance level of each plot differed in visitation frequency and activities performed on each visit. Investigator disturbance had no effect on the hatching success or fledging success (taken as 21 days of age) of ring-billed gull study pairs at either colony.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined the bee fauna of the Carolinian Zone in Ontario, Canada. In 2003, 15687 individuals from 152 species of bees were collected. Tliere were many rare species but few abundant species. There were three distinct bee seasons. The Niagara bee assemblage was less diverse compared to other Carolinian Zone assemblages and types of landscapes. This study also examined how anthropogenic disturbance affects the diversity of bee assemblages. The intermediate disturbance hypothesis (IDH) was tested by selecting field sites subject to low, intermediate, and high disturbance. Intermediate disturbance had the highest species richness (SR=1 15) and most bees (N=556I), followed by low disturbance (SR= 100, N=2975), then high disturbance (SR=72, N=1364), supporting the IDH. Increased species richness in areas of intermediate disturbance was due to higher abundance, possibly because more blooming flowers were found there. Bees were larger in high disturbance areas but smaller in areas of high and intermediate disturbance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study examined annual variation in phenology, abundance and diversity of a bee community during 2003, 2004, 2006, and 2008 in recovered landscapes at the southern end of St. Catharines, Ontario, Canada. Overall, 8139 individuals were collected from 26 genera and sub-genera and at least 57 species. These individuals belonged to the 5 families found in eastern North America (Andrenidae, Apidae, Colletidae, Halictidae and Megachilidae). The bee community was characterized by three distinct periods of flight activity over the four years studied (early spring, late spring/early summer, and late summer). The number of bees collected in spring was significantly higher than those collected in summer. In 2003 and 2006 abundance was higher, seasons started earlier and lasted longer than in 2004 and 2008, as a result of annual rainfall fluctuations. Differences in abundance for low and high disturbance sites decreased with years. Annual trends of generic richness resembled those detected for species. Likewise, similarity in genus and species composition decreased with time. Abundant and common taxa (13 genera and 18 species) were more persistent than rarer taxa being largely responsible for the annual fluctuations of the overall community. Numerous species were sporadic or newly introduced. The invasive species Anthidium oblongatum was first recorded in Niagara in 2006 and 2008. Previously detected seasonal variation patterns were confirmed. Furthermore, this study contributed to improve our knowledge of temporal dynamics of bee communities. Understanding temporal variation in bee communities is relevant to assessing impacts caused on their habitats by diverse disturbances.