2 resultados para Distributed system architecture
em Brock University, Canada
Resumo:
This case study examines the impact of a computer information system as it was being implemented in one Ontario hospital. The attitudes of a cross section of the hospital staff acted as a barometer to measure their perceptions of the implementation process. With The Mississauga Hospital in the early stages of an extensive computer implementation project, the opportunity existed to identify staff attitudes about the computer system, overall knowledge and compare the findings with the literature. The goal of the study was to develop a greater base about the affective domain in the relationship between people and the computer system. Eight exploratory questions shaped the focus of the investigation. Data were collected from three sources: a survey questionnaire, focused interviews, and internal hospital documents. Both quantitative and qualitative data were analyzed. Instrumentation in the study consisted of a survey distributed at two points in time to randomly selected hospital employees who represented all staff levels.Other sources of data included hospital documents, and twenty-five focused interviews with staff who replied to both surveys. Leavitt's socio-technical system, with its four subsystems: task, structure, technology, and people was used to classify staff responses to the research questions. The study findings revealed that the majority of respondents felt positive about using the computer as part of their jobs. No apparent correlations were found between sex, age, or staff group and feelings about using the computer. Differences in attitudes, and attitude changes were found in potential relationship to the element of time. Another difference was found in staff group and perception of being involved in the decision making process. These findings and other evidence about the role of change agents in this change process help to emphasize that planning change is one thing, managing the transition is another.
Resumo:
As the complexity of evolutionary design problems grow, so too must the quality of solutions scale to that complexity. In this research, we develop a genetic programming system with individuals encoded as tree-based generative representations to address scalability. This system is capable of multi-objective evaluation using a ranked sum scoring strategy. We examine Hornby's features and measures of modularity, reuse and hierarchy in evolutionary design problems. Experiments are carried out, using the system to generate three-dimensional forms, and analyses of feature characteristics such as modularity, reuse and hierarchy were performed. This work expands on that of Hornby's, by examining a new and more difficult problem domain. The results from these experiments show that individuals encoded with those three features performed best overall. It is also seen, that the measures of complexity conform to the results of Hornby. Moving forward with only this best performing encoding, the system was applied to the generation of three-dimensional external building architecture. One objective considered was passive solar performance, in which the system was challenged with generating forms that optimize exposure to the Sun. The results from these and other experiments satisfied the requirements. The system was shown to scale well to the architectural problems studied.