2 resultados para Direct methanol fuel cell

em Brock University, Canada


Relevância:

40.00% 40.00%

Publicador:

Resumo:

The original objective of this work was to provide a simple generator w.hich would produce hydrogen torLfuel-cell feed and which could be operated under remote or northern conditions. A secondary objective was to maximize the yield of hydrogen and carbon monoxide from available feed-stocks. A search of the patent literature has indicated that the concept of a small Wulff-type generator is essentially sound and that hydrogen may be recovered from a wide variety of hydrocarbon feed-stocks. A simple experimental set-up has been devised, patterned after ~~t originally used by R. G. Wulff for producing acetylene. This provides a supply of feed-stock, with or Without a carrier gas, which may be passed directly through a heated tube, which may contain a catalyst. A suitable procedure has been devised for analysi~ effluent gases for hydrogen, oxygen, nitrogen, methane and carbon monoxide by gas chromatography with the column packed with .Molecular .:>ieve .5 4. Athanol with air a.s carrier gas and at the same time as oxidant o was thermolyzed at temperatures in the ra~e 700-1100 C, with or Wi~lout catalyst. Methanol with or without nitrogen as a carrier gas was also cracked with • the same type of reactor refractory tube, but the temperature range was lower t down to ,300 " C when a catalyst was used. The problems of converting methane to hydrogen and carbon monoxide effiCiently, using air and/or water as oxidants were also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Neuropeptides can modulate physiological properties of neurons in a cell-specific manner. The present work examines whether a neuropeptide can also modulate muscle tissue in a cell-specific manner, using identified muscle cells in third instar larvae of fruit flies. DPKQDFMRFa, a modulatory peptide in the fruit fly Drosophila melanogaster, has been shown to enhance transmitter release from motor neurons and to elicit contractions by a direct effect on muscle cells. We report that DPKQDFMRFa causes a nifedipine-sensitive drop in input resistance in some muscle cells (6 and 7) but not others (12 and 13). The peptide also increased the amplitude of nerve-evoked contractions and compound excitatory junctional potentials (EJPs) to a greater degree in muscle cells 6 and 7 than 12 and 13. Knocking down FMRFa receptor (FR) expression separately in nerve and muscle indicate that both presynaptic and postsynaptic FR expression contributed to the enhanced contractions, but EJP enhancement was due mainly to presynaptic expression. Muscle-ablation showed that DPKQDFMRFa induced contractions and enhanced nerve-evoked contractions more strongly in muscle cells 6 and 7 than cells 12 and 13. In situ hybridization indicated that FR expression was significantly greater in muscle cells 6 and 7 than 12 and 13. Taken together, these results indicate that DPKQDFMRFa can elicit cell-selective effects on muscle fibres. The ability of neuropeptides to work in a cell-selective manner on neurons and muscle cells may help explain why so many peptides are encoded in invertebrate and vertebrate genomes.