6 resultados para Defense (Criminal procedure)
em Brock University, Canada
Resumo:
In order for young people to meaningfully participate in the criminal justice system they must possess an understanding of their rights and legal procedures. To examine their understanding, 50 young people between the ages of 13-17 who received an extrajudicial sanction or were sentenced to probation, were recruited from the Finch Courthouse in Toronto, Ontario. Semi-structured interviews were conducted with participants regarding their understanding of their due process rights and their rights under the United Nations Convention on the Rights of the Child. Youth who indicated involvement in plea bargaining were also asked about their experiences during this procedure. In addition, the present study examined youths' perceptions of power differences in their interactions with criminal justice officials working within an institution that has tremendous control over offenders' lives. The results indicate that while youth seem to have some understanding oftheir rights and legal procedures, they nevertheless feel ill-equipped to invoke their rights in an adult-led criminal justice system. Furthermore, while past literature has often conceptualized youth understanding based on age (e.g., Crawford & Bull, 2006) the findings of the present study demonstrate that while age plays some role, the lack of power experienced by youth vis-a-vis adults, and specifically criminal justice professionals, has the most bearing on the inability of youth to exercise their rights.
Resumo:
Arabidopsis is a model plant used to study disease resistance; Solanum tuberosum or potato is a crop species. Both plants possess inducible defense mechanisms that are deployed upon recognition of pathogen invasion. Transcriptional reprogramming is crucial to the activation of defense responses. The Pathogenesis-Related (PR) genes are activated in these defense programs. Expression of Arabidopsis PR-l and potato PR-10a serve as markers for the deployment of defense responses in these plants. PR-l expression indicates induction of systemic acquired resistance (SAR). Activation of SAR requires accumulation of salicylic acid (SA), in addition to the interaction of the non-expressor of pathogenesis-related genes I (NPRI), with the TGA transcription factors. The PR-10a is activated in response to pathogen invasion, wounding and elicitor treatment. PR-10a induction requires recruitment of the Whirly I (Whyl) activator to the promoter. This locus is also negatively regulated by the silencer element binding factor (SEBF). We established that both the PR-l and PR-10a are occupied by repressors under non-inducing conditions. TGA2 was found to be a constitutive resident and repressor of PR-l, which mediates repression by forming an oligomeric complex on the promoter. The DNA-binding activity of this oligomer required the TGA2 N-terminus (NT). Under resting conditions we determined that the PR-10a is bound by a repressosome containing SEBF and curiously the activator Pto interacting protein 4 (Pti4). In the context of this repressosome, SEBF is responsible for PR-10a binding, yet rWe also showed that PR-l and PR-10a are activated by different means. In PR-l activation the NPRI NT domain alleviates TGA2-mediated repression by interacting with the TGA2 NT. TGA2 remains at the PR-l but adopts a dimeric conformation and forms an enhanceosome with NPRl. In contrast, the PR-10a is activated by evicting the repressosome and recruiting Why! to the promoter. These results advance our understanding of the mechanisms regulating PR-l and PR-10a expression under resting and inducing conditions. This study also revealed that the means of regulation for related genes can differ greatly between model and crop s
Resumo:
Currently, individuals with intellectual disabilities are overrepresented within the Criminal Justice System (Griffiths, Taillon-Wasmond & Smith, 2002). A primary problem within the Criminal Justice System is the lack of distinction between mental illness and intellectual disabilities within the Criminal Code. Due to this lack of distinction and the overall lack of identification procedures in the Criminal Justice System, individuals with disabilities will often not receive proper accommodations to enable them to play an equitable role in the justice system. There is increasing evidence that persons with intellectual disabilities are more likely than others to have their rights violated, not use court supports and accommodations as much as they should, and be subject to miscarriages of justice (Marinos, 2010). In this study, interviews were conducted with mental health (n=8) and criminal justice professionals (n=8) about how individuals with dual diagnosis are received in the Criminal Justice System. It was found that criminal justice professionals lack significant knowledge about dual diagnosis, including effective identification and therefore appropriate supports and accommodations. Justice professionals in particular were relatively ill-prepared in dealing effectively with this population. One finding to highlight is that there is misunderstanding between mental health professionals and justice professionals about who ought to take responsibility and accountability for this population.
Resumo:
Although persons with intellectual disabilities have been conceptualized as having rights to equality in Canada and internationally, there continue to be gaps in the delivery of justice when they are involved within the criminal process. The literature consistently reported that individuals with Fetal Alcohol Spectrum Disorder (FASDs) often experienced challenges within the justice system, such as difficulty understanding abstract legal concepts (Conry & Fast, 2009). In the Canadian legal system, accommodations are available to enable persons with disabilities to receive equal access to justice; however, how these are applied to persons with FASDs had not been fully explored in the literature. In this study, in-depth interviews were conducted with social service agency workers (n=10) and justice professionals (n=10) regarding their views of the challenges persons with FASDs experience in the justice system and their suggestions on the use of accommodations. The findings showed that while supports have been provided for individuals with intellectual disabilities, there has been a lack of specialized accommodations available specifically for individuals with FASDs in accessing their right to justice.
Resumo:
Systemic Acquired Resistance (SAR) is a type of plant systemic resistance occurring against a broad spectrum of pathogens. It can be activated in response to pathogen infection in the model plant Arabidopsis thaliana and many agriculturally important crops. Upon SAR activation, the infected plant undergoes transcriptional reprogramming, marked by the induction of a battery of defense genes, including Pathogenesis-related (PR) genes. Activation of the PR-1 gene serves as a molecular marker for the deployment of SAR. The accumulation of a defense hormone, salicylic acid (SA) is crucial for the infected plant to mount SAR. Increased cellular levels of SA lead to the downstream activation of the PR-1 gene, triggered by the combined action of the Non-expressor of Pathogenesis-related Gene 1 (NPR1) protein and the TGA II-clade transcription factor (namely TGA2). Despite the importance of SA, its receptor has remained elusive for decades. In this study, we demonstrated that in Arabidopsis the NPR1 protein is a receptor for SA. SA physically binds to the C-terminal transactivation domain of NPR1. The two cysteines (Cys521 and Cys529), which are important for NPR1’s coactivator function, within this transactivation domain are critical for the binding of SA to NPR1. The interaction between SA and NPR1 requires a transition metal, copper, as a cofactor. Our results also suggested a conformational change in NPR1 upon SA binding, releasing the C-terminal transactivation domain from the N-terminal autoinhibitory BTB/POZ domain. These results advance our understanding of the plant immune function, specifically related to the molecular mechanisms underlying SAR. The discovery of NPR1 as a SA receptor enables future chemical screening for small molecules that activate plant immune responses through their interaction with NPR1 or NPR1-like proteins in commercially important plants. This will help in identifying the next generation of non-biocidal pesticides.
Resumo:
This paper develops a model of short-range ballistic missile defense and uses it to study the performance of Israel’s Iron Dome system. The deterministic base model allows for inaccurate missiles, unsuccessful interceptions, and civil defense. Model enhancements consider the trade-offs in attacking the interception system, the difficulties faced by militants in assembling large salvos, and the effects of imperfect missile classification by the defender. A stochastic model is also developed. Analysis shows that system performance can be highly sensitive to the missile salvo size, and that systems with higher interception rates are more “fragile” when overloaded. The model is calibrated using publically available data about Iron Dome’s use during Operation Pillar of Defense in November 2012. If the systems performed as claimed, they saved Israel an estimated 1778 casualties and $80 million in property damage, and thereby made preemptive strikes on Gaza about 8 times less valuable to Israel. Gaza militants could have inflicted far more damage by grouping their rockets into large salvos, but this may have been difficult given Israel’s suppression efforts. Counter-battery fire by the militants is unlikely to be worthwhile unless they can obtain much more accurate missiles.