3 resultados para Decoupling

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Zubarev equation of motion method has been applied to an anharmonic crystal of O( ,,4). All possible decoupling schemes have been interpreted in order to determine finite temperature expressions for the one phonon Green's function (and self energy) to 0()\4) for a crystal in which every atom is on a site of inversion symmetry. In order to provide a check of these results, the Helmholtz free energy expressions derived from the self energy expressions, have been shown to agree in the high temperature limit with the results obtained from the diagrammatic method. Expressions for the correlation functions that are related to the mean square displacement have been derived to 0(1\4) in the high temperature limit.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Toluene is converted to benzyl alcohol by the fungi Mortierella isabellina and Helminthosporium species; in the latter case, the product is further metabolized. Toluene-a -d 1 , toluene-a,a-d2, and toluene-a,a,a-d 3 have been used with Mortierellaisabellina in a series of experiments to determine both primary and secondary deuterium kinetic isotope effects for the enzymic benzylic hydroxylation reaction. The values obtained, intermolecular primary kH/kD = intramolecular p rim a r y kH r kD = 1. 0 2 + O. 0 5, and sec 0 n dar y k H I kD = 1. 37 .:!. 0.05, suggest a mechanism for the reaction involving benzylic proton removal from a radical intermediate in a non-symmetrical transition state. 2H NMR (30.7 MHz) studies using ethylbenzene-l,1-d 2 , 3 -fluoroethylbenzene-l,1-d 2 , 4 -fluoroethylbenzene-l,1-d 2 , and toluene-dB as substrates with Mortierella isabellina suggest, based on the observable differences in rates of conversion between the substrates, that the hydroxylation of hydrocarbons at the benzylic position proceeds via a one electron abstraction from the aromatic ring, giving a radical cation. A series of 1,3-oxathiolanes (eight) were incubated with Mortierella isabellina , Helminthosporium , Rhizopus arrhizus , and Aspergillus niger . Sulphoxides were obtained from Mortierella isabellina and Rhizopus arrhizus using the substrates 2-phenyl-, 2-methyl-2-phenyl-, and 2-phenyl-2-tert. butyl-l,3-oxathiolane. The relative stereochemistry of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was assigned based on lH decoupling, n.O.e, 1 and H NMR experiments. The lH NMR (200 MHz) of the methylene protons of 2-methyl-2-phenyl-l,3-oxathiolan-l-oxide was used as a diagnostic standard in assigning the relative stereochemistry of 2-phenyl-l,3-oxathiolan-l-oxide and 2-phenyl-2-tert. butyl-l,3-oxathiolan-l-oxide. The sulphoxides obtained were consistent with an oxidation occurring from the opposite side of the molecule to the phenyl substituent.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge Photosynthesis in general is a key biological process on Earth and Photo system II (PSII) is an important component of this process. PSII is the only enzyme capable of oxidizing water and is largely responsible for the primordial build-up and present maintenance of the oxygen in the atmosphere. This thesis endeavoured to understand the link between structure and function in PSII with special focus on primary photochemistry, repair/photodamage and spectral characteristics. The deletion of the PsbU subunit ofPSII in cyanobacteria caused a decoupling of the Phycobilisomes (PBS) from PSII, likely as a result of increased rates of PSII photodamage with the PBS decoupling acting as a measure to protect PSII from further damage. Isolated fractions of spinach thylakoid membranes were utilized to characterize the heterogeneity present in the various compartments of the thylakoid membrane. It was found that the pooled PSIILHCII pigment populations were connected in the grana stack and there was also a progressive decrease in the reaction rates of primary photochemistry and antennae size of PSII as the sample origin moved from grana to stroma. The results were consistent with PSII complexes becoming damaged in the grana and being sent to the stroma for repair. The dramatic quenching of variable fluorescence and overall fluorescent yield of PSII in desiccated lichens was also studied in order to investigate the mechanism by which the quenching operated. It was determined that the source of the quenching was a novel long wavelength emitting external quencher. Point mutations to amino acids acting as ligands to chromophores of interest in PSII were utilized in cyanobacteria to determine the role of specific chromophores in energy transfer and primary photochemistry. These results indicated that the Hl14 ligated chlorophyll acts as the 'trap' chlorophyll in CP47 at low temperature and that the Q130E mutation imparts considerable changes to PSII electron transfer kinetics, essentially protecting the complex via increased non-radiative charge.