1 resultado para Data structures (Computer science)
em Brock University, Canada
Filtro por publicador
- KUPS-Datenbank - Universität zu Köln - Kölner UniversitätsPublikationsServer (4)
- Repository Napier (1)
- Aberdeen University (1)
- Aberystwyth University Repository - Reino Unido (27)
- Academic Archive On-line (Jönköping University; Sweden) (1)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (1)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (3)
- Applied Math and Science Education Repository - Washington - USA (1)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (27)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (1)
- Aston University Research Archive (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (15)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (21)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (39)
- Boston University Digital Common (16)
- Brock University, Canada (1)
- Bulgarian Digital Mathematics Library at IMI-BAS (5)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (17)
- CentAUR: Central Archive University of Reading - UK (68)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (5)
- Cochin University of Science & Technology (CUSAT), India (9)
- CORA - Cork Open Research Archive - University College Cork - Ireland (1)
- CUNY Academic Works (4)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (6)
- Digital Commons - Michigan Tech (1)
- Digital Commons at Florida International University (6)
- Digital Peer Publishing (1)
- DigitalCommons@University of Nebraska - Lincoln (1)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (1)
- Duke University (4)
- Glasgow Theses Service (1)
- Greenwich Academic Literature Archive - UK (18)
- Helda - Digital Repository of University of Helsinki (28)
- Indian Institute of Science - Bangalore - Índia (58)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (1)
- Ministerio de Cultura, Spain (2)
- Nottingham eTheses (1)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (5)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (42)
- Queensland University of Technology - ePrints Archive (211)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Institucional da Universidade Tecnológica Federal do Paraná (RIUT) (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (9)
- Scielo Uruguai (1)
- Scientific Open-access Literature Archive and Repository (1)
- Universidad de Alicante (5)
- Universidad Politécnica de Madrid (9)
- Universidade Metodista de São Paulo (2)
- Universitat de Girona, Spain (2)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (165)
- Université de Montréal, Canada (3)
- University of Connecticut - USA (1)
- University of Michigan (43)
- University of Queensland eSpace - Australia (9)
- University of Southampton, United Kingdom (19)
- University of Washington (5)
- WestminsterResearch - UK (1)
- Worcester Research and Publications - Worcester Research and Publications - UK (1)
Resumo:
Spatial data representation and compression has become a focus issue in computer graphics and image processing applications. Quadtrees, as one of hierarchical data structures, basing on the principle of recursive decomposition of space, always offer a compact and efficient representation of an image. For a given image, the choice of quadtree root node plays an important role in its quadtree representation and final data compression. The goal of this thesis is to present a heuristic algorithm for finding a root node of a region quadtree, which is able to reduce the number of leaf nodes when compared with the standard quadtree decomposition. The empirical results indicate that, this proposed algorithm has quadtree representation and data compression improvement when in comparison with the traditional method.