4 resultados para DNA-Binding Proteins -- deficiency -- immunology
em Brock University, Canada
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
TGA2 is a dual-function Systemic Acquired Resistance (SAR) transcription factor involved in the activation and repression of pathogenesis-related (PR) genes. Recent studies have shown that TGA2 is able to switch from a basal repressor to activator, likely, through regulatory control from its N-terminus. The N-terminus has also been shown to affect DNA binding of the TGA2 bZIP domain when phosphorylated by Casein Kinase II (CK2). The mechanisms involved for directing a switch from basal repressor to activator, and the role of kinase activity, have not previously been looked at in detail. This study provides evidence for the involvement of a CK2-like kinase in the switch of TGA2 activity from repressor to activator, by regulating the DNA-binding activity of TGA2 by phosphorylating residues in the N terminus of the protein.
Resumo:
Multicoloured Asian Lady Beetles (MALB) and 7-spot Lady Beetles that infect vineyards can secrete alkyl-methoxypyrazines when they are processed with the grapes, resulting in wines containing a taint. The main methoxypyrazine associated with this taint is 3-isopropyl-2-methoxypyrazine (IPMP). The wines are described as having aroma and flavours of peanut butter, peanut shells, asparagus and earthy which collectively, have become known as “ladybug taint”. To date, there are no known fining agents used commercially added to juice or wine that are effective in removing this taint. The goal of this project was to use previously identified proteins with an ability to bind to methoxypyrazines at low pH, and subsequently develop a binding assay to test the ability of these proteins to bind to and remove methoxypyrazines from grape juice. The piglet odorant binding protein (plOBP) and mouse major urinary protein (mMUP) were identified, cloned and expressed in the Pichia pastoris expression system. Protein expression was induced using methanol and the proteins were subsequently purified from the induction media using anion exchange chromatography. The purified proteins were freeze-dried and rehydrated prior to use in the methoxypyrazine removal assay. The expression and purification system resulted in yields of approximately 78% of purified plOBP and 62% of purified mMUP from expression to rehydration. Purified protein values were 87 mg of purified plOPB per litre of induction media and 19 mg of purified mMUP per litre of induction medium. In order to test the ability of the protein to bind to the MPs, an MP removal assay was developed. In the assay, the purified protein is incubated with either IPMP or 3-isobutyl-2-methoxypyrazine (IBMP) for two hours in either buffer or grape juice. Bentonite is then used to capture the protein-MP complex and the bentonite-protein-MP complex is then removed from solution by filtration. Residual MP is measured in solution following the MP removal assay and compared to that in the starting solution by Gas Chromatography Mass Spectrometry (GC/MS). GC/MS results indicated that the mMUP was capable of removing IBMP and IPMP from 300 ng/L in buffer pH 4.0, buffer pH 3.5 and Riesling Juice pH 3.5 down to the limit of quantification of the instrument, which is 6ng/L and 2ng/L for IBMP and IPMP, respectively. The results for the plOBP showed that although it could remove some IBMP, it was only approximately 50-70 ng/L more than bentonite treatment followed by filtration, resulting in approximately 100 ng/L of the MPs being left in solution. pIOBP was not able to remove IPMP in buffer pH 3.5 using this system above that removed by bentonite alone. As well, the pIOBP was not able to remove any additional MPs from Chardonnay juice pH 3.5 above that already removed by the bentonite and filtration alone. The mouse MUP was shown to be a better candidate protein for removal of MPs from juice using this system.
Resumo:
During infection, the model plant Arabidopsis thaliana is capable of activating long lasting defence responses both in tissue directly affected by the pathogen and in more distal tissue. Systemic acquired resistance (SAR) is a type of systemic defence response deployed against biotrophic pathogens resulting in altered plant gene expression and production of antimicrobial compounds. One such gene involved in plant defence is called pathogenesis-related 1 (PR1) and is under the control of several protein regulators. TGA II-clade transcription factors (namely TGA2) repress PR1 activity prior to infection by forming large oligomeric complexes effectively blocking gene transcription. After pathogen detection, these complexes are dispersed by a mechanism unknown until now and free TGA molecules interact with the non-expressor of pathogenesis-related gene 1 (NPR1) protein forming an activating complex enabling PR1 transcription. This study elucidates the TGA2 dissociation mechanism by introducing protein kinase CK2 into this process. This enzyme efficiently phosphorylates TGA2 resulting in two crucial events. Firstly, the DNA-binding ability of this transcription factor is completely abolished explaining how the large TGA2 complexes are quickly evicted from the PR1 promoter. Secondly, a portion of TGA2 molecules dissociate from the complexes after phosphorylation which likely makes them available for the formation of the TGA2-NPR1 activating complex. We also show that phosphorylation of a multiserine motif found within TGA2’s N terminus is responsible for the change of affinity to DNA, while modification of a single threonine in the leucine zipper domain seems to be responsible for deoligomerization. Despite the substantial changes caused by phosphorylation, TGA2 is still capable of interacting with NPR1 and these proteins together form a complex on DNA promoting PR1 transcription. Therefore, we propose a change in the current model of how PR1 is regulated by adding CK2 which targets TGA2 displacing it’s complexes from the promoter and providing solitary TGA2 molecules for assembly of the activating complex. Amino acid sequences of regions targeted by CK2 in Arabidopsis TGA2 are similar to those found in TGA2 homologs in rice and tobacco. Therefore, the molecular mechanism that we have identified may be conserved among various plants, including important crop species, adding to the significance of our findings.