2 resultados para DNA vaccine delivery

em Brock University, Canada


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Hepatitis C virus (HCV) is the causative agent of Hepatitis C, a serious global health problem which results in liver cirrhosis and hepatocellular carcinoma. Currently there is no effective treatment or vaccine against the virus. Therefore, development of a therapeutic vaccine is of paramount importance. In this project, three alternative approaches were used to control HCV including a DNA vaccine, a recombinant viral vaccine and RNA interference. The first approach was to test the effect of different promoters on the efficacy of a DNA vaccine against HCV. Plasmids encoding HCV-NS3 and E1 antigens were designed under three different promoters, adenoviral E1A, MLP, and CMV ie. The promoter effect on the antigen expression in 293 cells, as well as on the antibody level in immunized BALB/c mice, was evaluated. The results showed that the antigens were successfully expressed from all vectors. The CMV ie promoter induced the highest antigen expression and the highest antibody level. Second, the efficiency of a recombinant adenovirus vaccine encoding HCV-NS3 was compared to that of a HCV-NS3 plasmid vaccine. The results showed that the recombinant adenovirus vaccine induced higher antibody levels as compared to the plasmid vaccine. The relationship between the immune response and miRNA was also evaluated. The levels of mir-181, mir-155, mir-21 and mir-296 were quantified in the sera of immunized animals. mir-181 and mir-21 were found to be upregulated in animals injected with adenoviral vectors. Third, two recombinant adenoviruses encoding siRNAs targeting both the helicase and protease parts of the NS3 region were tested for their ability to inhibit NS3 expression. The results showed that the siRNA against protease was more effective in silencing the HCV-NS3 gene in a HCV replicon cell line. This result confirmed the efficiency of adenovirus for siRNA delivery. These results confirmed that CMV ie is optimum promoter for immune response induction. Adenovirus was shown to be an effective delivery vector for antigens or siRNAs. In addition, miRNAs were proved to be involved in the regulation of immune response.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT Recombinant adenoviruses are currently under intense investigation as potential gene delivery and gene expression vectors with applications in human and veterinary medicine. As part of our efforts to develop a bovine adenovirus type 2 (BAV2) based vector system, the nucleotide sequence of BAV2 was determined. Sixty-six open reading frames (ORFs) were found with the potential to encode polypeptides that were at least 50 amino acid (aa) residue long. Thirty-one of the BAV2 polypeptide sequences were found to share homology to already identified adenovirus proteins. The arrangement of the genes revealed that the BAV2 genomic organization closely resembles that of well-characterized human adenoviruses. In the course of this study, continuous propagation of BAV2 over many generations in cell culture resulted in the isolation of a BAV2 spontaneous mutant in which the E3 region was deleted. Restriction enzyme, sequencing and PCR analyses produced concordant results that precisely located the deletion and revealed that its size was exactly 1299 bp. The E3-deleted virus was plaque-purified and further propagated in cell culture. It appeared that the replication of such a virus lacking a portion of the E3 region was not affected, at least in cell culture. Attempts to rescue a recombinant BAV2 virus with the bacterial kanamycin resistance gene in the E3 region yielded a candidate as verified with extensive Southern blotting and PCR analyses. Attempts to purify the recombinant virus were not successful, suggesting that such recombinant BAV2 was helper-dependent. Ten clones containing full-length BAV2 genomes in a pWE15 cosmid vector were constructed. The infectivity of these constructs was tested by using different transfection methods. The BAV2 genomic clones did appear to be infectious only after extended incubation period. This may be due to limitations of various transfection methods tested, or biological differences between virus- and E. co//-derived BAV2 DNA.