5 resultados para DIFFUSION-EQUATIONS

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We examined three different algorithms used in diffusion Monte Carlo (DMC) to study their precisions and accuracies in predicting properties of isolated atoms, which are H atom ground state, Be atom ground state and H atom first excited state. All three algorithms — basic DMC, minimal stochastic reconfiguration DMC, and pure DMC, each with future-walking, are successfully impletmented in ground state energy and simple moments calculations with satisfactory results. Pure diffusion Monte Carlo with future-walking algorithm is proven to be the simplest approach with the least variance. Polarizabilities for Be atom ground state and H atom first excited state are not satisfactorily estimated in the infinitesimal differentiation approach. Likewise, an approach using the finite field approximation with an unperturbed wavefunction for the latter system also fails. However, accurate estimations for the a-polarizabilities are obtained by using wavefunctions that come from the time-independent perturbation theory. This suggests the flaw in our approach to polarizability estimation for these difficult cases rests with our having assumed the trial function is unaffected by infinitesimal perturbations in the Hamiltonian.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diffusion of Co60 in the body centered cubic beta phase of a ZrSOTi SO alloy has been studied at 900°, 1200°, and 1440°C. The results confirm earlier unpublished data obtained by Kidson17 • The temperature dependence of the diffusion coefficient is unusual and suggests that at least two and possibly three mechanisms may be operative Annealing of the specimen in the high B.C.C. region prior to the deposition of the tracer results in a large reduction in the diffusion coefficient. The possible significance of this effect is discussed in terms of rapid transport along dislocation network.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our objective is to develop a diffusion Monte Carlo (DMC) algorithm to estimate the exact expectation values, ($o|^|^o), of multiplicative operators, such as polarizabilities and high-order hyperpolarizabilities, for isolated atoms and molecules. The existing forward-walking pure diffusion Monte Carlo (FW-PDMC) algorithm which attempts this has a serious bias. On the other hand, the DMC algorithm with minimal stochastic reconfiguration provides unbiased estimates of the energies, but the expectation values ($o|^|^) are contaminated by ^, an user specified, approximate wave function, when A does not commute with the Hamiltonian. We modified the latter algorithm to obtain the exact expectation values for these operators, while at the same time eliminating the bias. To compare the efficiency of FW-PDMC and the modified DMC algorithms we calculated simple properties of the H atom, such as various functions of coordinates and polarizabilities. Using three non-exact wave functions, one of moderate quality and the others very crude, in each case the results are within statistical error of the exact values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Symmetry group methods are applied to obtain all explicit group-invariant radial solutions to a class of semilinear Schr¨odinger equations in dimensions n = 1. Both focusing and defocusing cases of a power nonlinearity are considered, including the special case of the pseudo-conformal power p = 4/n relevant for critical dynamics. The methods involve, first, reduction of the Schr¨odinger equations to group-invariant semilinear complex 2nd order ordinary differential equations (ODEs) with respect to an optimal set of one-dimensional point symmetry groups, and second, use of inherited symmetries, hidden symmetries, and conditional symmetries to solve each ODE by quadratures. Through Noether’s theorem, all conservation laws arising from these point symmetry groups are listed. Some group-invariant solutions are found to exist for values of n other than just positive integers, and in such cases an alternative two-dimensional form of the Schr¨odinger equations involving an extra modulation term with a parameter m = 2−n = 0 is discussed.