3 resultados para Cytosol.
em Brock University, Canada
Resumo:
Numerous investigations have demonstrated large increases in y-amino butyrate (GABA) levels in response to a variety of stresses such as touch or cold shock (Wallace et ale 1984) Circumstantial evidence indicating a role of Ca2 + in these increases includes elevated Ca2+ levels in response to touch and cold shock (Knight et ale 1991), and the demonstration of a calmodulin binding domain on glutamate decarboxylase (GAD), the enzyme responsible for GABA synthesis (Baum et al 1993) In the present study the possible role of Ca2+ and calmodulin in stimulation of GAD and subsequent GABA accumulation was examined using asparagus mesophyll cells. Images of cells loaded with the Ca2+ indicator Fluo-3 revealed a rapid and transient increase in cytosolic Ca2+ in response to cold shock. GABA levels increased by 106% within 15 min. of cold shock. This increase was inhibited 70% by the calmodulin antagonist W7, and 42% by the Ca2+ channel blocker La3+.. Artificial elevation of intracellular Ca2+ by the Ca2+ionophore A23187 resulted in an 61% increase in GABA levels. Stimulation of GABA synthesis by ABA resulted in an 83% increase in GABA levels which was inhibited 55% by W7. These results support the hypothesis that cold shock stimulates Ca2+ entry into the cytosol of the cells which results in Ca2+/calmodulin mediated activation of GAD and consequent GABA synthesis.
Resumo:
GABA (4-aminobutyrate) is synthesized through the decarboxylation of LGlu- (L-Glu-+ H+ ---> GABA + C02), and compared to many free amino acids is present in high concentrations in plant cells. GABA levels rise rapidly and dramatically in response to varied stress conditions including anaerobiosis. Recent papers suggest that GABA production and associated H+ consumption are parts of a metabolic pH-stat mechanism which ameliorates the intracellular pH decline associated with anaerobiosis or other treatments. To test this hypothesis GABA production and efflux have been measured in isolated Asparagus sprengeri cells in response to three treatments which potentially cause intracellular acidification. Acid loads were imposed using 60 min of (i) anaerobiosis, (ii) H+/LGlu- cotransport, and (iii) treatment with permeant weak acids (butyric, acetic and propionic). Both intra- and extracellular GABA concentrations increased more than 100% after anaerobiosis, almost 1000% after H+/L-Glu- cotransport (light or dark) and almost 5000/0 after addition of 5 mM butyric acid at pH 5.0. HPLC analysis of amino acids indicates that as GABA concentrations increased in response to butyric acid addition, glutamate concentrations decreased. Time-course studies demonstrated that added butyric acid stimulates GABA production by 2800/0 within 15 seconds. A fluorescent determination of cytosolic pH indicates that addition of butyric or other weak acids resulted in a rapid reduction in cytosolic pH of 0.6 pH units. The half time for the response to butyric acid addition is 2.1 seconds, indicating that the decline in cytosolic pH is rapid enough to account for the rapid stimulation of GABA production. The acid load in response to butyric acid addition was assayed by measurements of 14C-butyric acid uptake. Calculations indicate that GABA production accounted for 45% of the imposed acid load. The biological significance of GABA efflux is not yet understood. The results support the original hypothesis suggesting a role for GABA production in cellular pH regulation.
Resumo:
Phosphoenolpyruvate carboxylase (PEPC) and malic enzyme activities in soluble protein extracts of Avena coleoptiles were investigated to determine whether their kinetics were consistent with a role in cytosol pH regulation. Malic enzyme activity was specific for NADP+ and Mn2+. Maximal labelled product formation from [14C]-substrates required the presence of all coenzymes, cofactors and substrates. Plots of rate versus malate concentration, and linear transformations there- 2 of, indicated typical Michaelis-Menten kinetics at non-saturating malate levels and substrate inhibition at higher malate levels. pH increases between 6.5 and 7.25 increased near-optimal activity, decreased the degree of substrate inhibition and the Kmapp(Mn2+) but did not affect the Vmax or Kmapp(malate). Transformed data of PEPC activity demonstrated non-linear plots indicative of non-Michaelian kinetics. pH increases between 7.0 and 7.6 increased the Vmax and decreased the Km app (Mg2+) but did not affect the Kmapp(PEP). Various carboxylic acids and phosphorylated sugars inhibited PEPC and malic enzyme activities, and these effects decreased with pH increases. Metabolite inhibited malic enzyme activity was non-competitive and resulted mainly from Mn2+ chelation. In contrast, metabolite inhibited PEPC activity was unique for each compound tested, being variously dependent on the PEP concentration and the pH employed. These results indicate that fluctuations in pH and metabolite levels affect PEPC and malic enzyme activities similarly and that 3 the in vitro properties of PEPC are consistent with its proposed role in a pH-stat, whereas the in vitro properties of the malic enzyme cannot be interpreted in terms of a role in pH regulation.