3 resultados para Crabs - Spatial distribution

em Brock University, Canada


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The present study was carried out to test the hypothesis that photosynthetic bacteria contribute a large portion of the food of filter feeding zooplankton populations in Crawford Lake, Ontario. The temporal and spatial variations of both groups of organisms are strongly dependent on one another. 14 By using C-Iabelled photosynthetic bacteria. the ingestion and clearance rates of Daphnia pulex, ~. rosea, and Keratella spp were estimated during summer and fall of 1982. These quantitative estimations of zooplankton ingestion and clearence rates on photosynthetic bacteria comprised an original addition to the literature. Photosynthetic bacteria comprised a substantial portion of the diet of all four dominant zooplankton species. The evidence for this is based on the ingestion and clearance rates of the dominant zooplankton species. Ingestion rates of D. pulex and D. rosea ranged 5 5 -1 -1 - -- 5 - -- 5 from 8.3X10 -1 to 14.6XlO -1 cells.ind. hr and 8.1X10 to 13.9X10 cells.ind. hr • Their clearance rates ranged from 0.400 to 1.000 -1 -1 -1 -1 ml.ind. hr. and 0.380 to 0.930 ml.ind. hr • The ingestion and clearance -1 -1 -1 -1 rates of Keratella spp were 600 cell.ind. hr and 0.40 ul.ind. hr respectively. Clearance rates were inversely proportional to the concentration of food cells and directly proportional to the body size of the animals. It is believed that despite the very short reg~neration times of photosynthetic bacteria (3-8 hours) their population densities were controlled in part by the feeding rates of the dominant zooplankton in Crawford Lake. By considering the regeneration times of photosynthetic bacteria and the population clearance rates of zooplankton, it was estimated that between 16 to 52% and 11 to 35% of the PHotosynthetic bacteria were' consumed· by Daphnia· pulex. and Q.. rosea per day. The temporal and spatial distribution of Daphnia pulex, !.. rosea, Keratella quadrata, K. coChlearis and photosynthetic bacteria in Crawford Lake were also investigated during the period of October, 1981 to December, 1982. The photosynthetic bacteria in the lake, constituted a major food source for only those zooplankton Which tolerate anaerobic conditions. Changes in temperature and food appeared to correlate with the seasonal changes in zooplankton density. All four dominant species of zooplankton were abundant at the lake's surface (O-4m) during winter and spring and moved downwards with the thermocline as summer stratification proceeded. Photosynthetic bacteria formed a 2 m thick layer at the chemocline. The position of this photosynthetic bacterial J-ayer changed seasonally. In the summer, the bacterial plate moved upwards and following fall mixing it moved downwards. A vertical shift of O.8m (14.5 to 15.3m) was recorded during the period of June to December. The upper limit of the photosynthetic bacteria in the water column was controlled by dissolved oxygen, and sulfide concentrations While their lower limit was controlled by light intensity. A maximum bacterio- 1 chlorophyll concentration of 81 mg Bchl.l was recorded on August 9, 1981. The seasonal distribution of photosynthetic bacteria was controlledinpart' by ·theg.-"z1ai'_.Q;~.zoopl. ank:tCm;-.Qther -ciactors associated with zooplankton grazing were oxygen and sulfide concentrations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In the literature, introduced taxa are assumed to be present, more abundant, and occupy greater physical space in portions of ecosystems disturbed by human activity. This study tested this principle in two sites, Short Hills provincial Park ("SHU) and Backus Woods ("B~l"). spatial distribution of introduced taxa of vegetation, isopods, and earthworms was determined with the runs test along 300m transects encompassing gradients of anthropogenic disturbance severity. The hypothesis was that introduced taxa would be aggregated along these transects; the null hypothesis was that they would not be aggregated. The null hypothesis was rejected for the introduced taxa as a unit, and vegetation and earthworms individually. Introduced taxa were aggregated along 53.33% (N~30) and 57.14% (N~21) of the transects in SH and BW (respectively). Introduced vegetation (90.00%, N~10 and 100.00%, N~7) and earthworms (50.00%, N~10 and 50.00%, N~8) were also significantly aggregated within the sites. Introduced isopods, however, were not significantly aggregated at either place (20. 00%, N-=10 and 16. 67%, ~J~6). This study demonstrated that introduced taxa are aggregated within ecosystems disturbed by human activity. However, since introduced isopods were not significantly aggregated it was also shown that taxa respond differently.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The Middle Ordovician Sunblood Formation in the South Nahanni River area, District of Mackenzie, comprises mainly limestones and dolostones of intertidal and shallow subtidal origin as indicated by the presence of desiccation polygons, fenestral fabric, and oncolites. The study of well preserved, silicified trilobites from low diversity, Bathyurus-dominated, Nearshore Biofacies faunas of Whiterockian and Chazyan age collected in six stratigraphic sections through the Sunblood Formation permits the recognition of three new Whiterockian zones, and two previously established Chazyan zones. The Bathyurus mackenziensis, Bathyurus sunbloodensis, and Bathyurus margareti zones (Whiterockian), together with the Bathyurus nevadensis and Bathyurus granu/osus zones (Chazyan) represent the Nearshore Biofacies components of a dual biostratigraphic scheme that considers both temporal and spatial distribution patterns, and are compositionally distinct from faunas in correlative strata around North America that represent other biofacies. Twenty-six species belonging to eighteen genera are described and illustrated. Ludvigsenella ellipsepyga is established as a new bathyurine genus, in addition to four new species of Bathyurus : Bathyurus mackenziensis, Bathyurus sunbloodensis, Bathyurus margareti and Bathyurus acanthopyga. Other genera present are: Basilicus, Isote/us, ///aenus, Bumastoides, Fail/eana, Phorocepha/a,Ceraurinella, Acanthoparypha, Xystocrania, Cydonocephalus, Ectenonotus, Pseudomera, Encrinuroides, Calyptaulax, Amphilichas and Hemiarges.