5 resultados para Core temperature

em Brock University, Canada


Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study examined the interactions between the reproductive status and the thermoregulatory responses during exercise in the cold in girls involved in competitive sports. Four girls with established menstrual cycles comprised the eumenorrheic menarcheal group (EM) and 5 non-menstruating girls comprised the pre-menarcheal group (PM). During the first visit maximal oxygen consumption, height, weight and percent body fat (%BF) were measured. The second visit involved: a determination of metabolic rate in thermoneutrality (21°C) involving 10-min rest and 20-min cycling (30% of VCL max), and a cold stress test (5°C, 40% humidity, <0.3 m/s air velocity) involving 20-min rest and 40-min cycling (30% of VCL max.). Subjects in the EM group were tested twice in the chamber during the follicular and luteal phases. Pre-menarcheal subjects were found to have significantly (p<0.05) lower core temperatures during the final stages of cold exposure. Overall, body fat was not significantly correlated with core temperature in the cold, however there was a significant surface-to-mass ratio difference between the groups. While in the follicular phase, EM girls had a higher core temperature during cold exposure. Therefore, reproductive hormonal status seems to be an important factor in terms of cold tolerance in females during adolescence.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Basal body temperature (BBT) and thermoeffector thresholds increase following ovulation in many women. This study investigated if solely central thermoregulatory alterations are responsible. Seven females in a non-contraceptive group (NCG) were compared with 5 monophasic contraceptive users (HCG) on separate accounts: pre-ovulation (Trial I; d 2-5) and post-ovulation (Trial 2; 4-8 d post-positive ovulation) for NCG, and active phase for HCG (d 2-5, d 18-21). During immersion in 28°C water to the axilla, participants exercised for 20-30 min on an underwater ergometer. After steadily sweating, immersion continued until metabolism increased two-fold due to shivering. Rectal (Tre) BBT was not different between trials for neither NCG (1: 37.34±0.16°C; 2: 37.35±0.27°C) nor HCG. At exercise termination, Tre forehead sweating cessation increased (P<0.05) in trial 2 irrespective of group (1: 37.55±0.39°C; 2: 37.90±0,46°C). Tre shivering onset did not increase (P>0.05) in trial 2 (1: 36.91±0.50°C; 2: 37.07±0,45°C). The widths of the interthreshold zone increased (P<0.05) in trial 2 (1: 0.64±0.22°C; 2: 0.82±0.37°C) due to the increased sweating threshold only. HCG cooled quicker (1: -l.15±0,43°C; 2: -1.00±0.50°C) than NCG participants (1: - 0.58±0.22°C; 2: -0.52±O.29°C), and tympanic (Tty) sweat thresholds were significantly (P<0.05) decreased (1: 34.76±0.54°C; 2: 35.39±0.61°C) versus NCG (l: 35.57±0.77°C; 2: 35.89±1.04°C). Lastly, Tre and Tty thresholds were significantly different (Pcore temperature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Type 1 Diabetes Mellitus (T1DM) is an autoimmune disease that destroys pancreatic beta cells, affecting glucose homeostasis. In T1DM, glucoregulation and carbohydrate oxidation may be altered in different ambient temperatures; however, current literature has yet to explore these mechanisms. This study examines the effects of 30 minutes of exercise at 65% VO2max in 5ºC, 20ºC and 35ºC in individuals with T1DM. No significant differences were observed for blood glucose across the 3 conditions (p = 0.442), but significance was found for core temperature, heat storage, and sweat rate (p < 0.01). Blood glucose was also shown to vary greatly between individuals among conditions. The mechanisms behind the differences in blood glucose may be due to the lack of significant glucagon production among conditions. These findings suggest that T1DM individuals may exercise submaximally for 30 minutes in different ambient temperatures without significant differences in glucoregulation.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The interaction between local and reflexive control of skin blood flow (SkBF) is unclear. This thesis isolated the roles of rectal (Tre) and local (Tloc) temperature on forearm SkBF regulation at normal and elevated body temperatures, and to investigate the interaction between local and reflexive SkBF control. While either normothermic (Tre ~37.0°C) or hyperthermic (∆Tre +1.1°C), SkBF was assessed on the dorsal aspect of each forearm in 10 participants while Tloc was manipulated in an A-B-A-B fashion between neutral (33.0°C) and hot (38.5°C). Finally, local heating to 44°C was performed to elicit maximal SkBF. Data are presented as a percentage of maximal cutaneous vascular conductance (CVC), calculated as laser-Doppler flux divided by mean arterial pressure. Tloc manipulations performed during normothermia had significantly greater effects on CVC than during hyperthermia. The decreased modification to SkBF from the Tloc changes during hyperthermia suggests that strong reflexive vasodilation attenuates local SkBF control mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low temperature (77K) linear dichroism spectroscopy was used to characterize pigment orientation changes accompanying the light state transition in the cyanobacterium, Synechococcus sp. pee 6301, and cold-hardening in winter rye (Secale cereale L. cv. Puma). Samples were oriented for spectroscopy using the gel squeezing method (Abdourakhmanov et aI., 1979) and brought to 77K in liquid nitrogen. The linear dichroism (LD) spectra of Synechococcus 6301 phycobilisome/thylakoid membrane fragments cross-linked in light state 1 and light state 2 with glutaraldehyde showed differences in both chlorophyll a and phycobilin orientation. A decrease in the relative amplitude of the 681nm chlorophyll a positive LD peak was observed in membrane fragments in state 2. Reorientation of the phycobilisome (PBS) during the transition to state 2 resulted in an increase in core allophycocyanin absorption parallel to the membrane, and a decrease in rod phycocyanin parallel absorption. This result supports the "spillover" and "PBS detachment" models of the light state transition in PBS-containing organisms, but not the "mobile PBS" model. A model was proposed for PBS reorientation upon transition to state 2, consisting of a tilt in the antenna complex with respect to the membrane plane. Linear dichroism spectra of PBS/thylakoid fragments from the red alga, Porphyridium cruentum, grown in green light (containing relatively more PSI) and red light (containing relatively more PSll) were compared to identify chlorophyll a absorption bands associated with each photosystem. Spectra from red light - grown samples had a larger positive LD signal on the short wavelength side of the 686nm chlorophyll a peak than those from green light - grown fragments. These results support the identification of the difference in linear dichroism seen at 681nm in Synechococcus spectra as a reorientation of PSll chromophores. Linear dichroism spectra were taken of thylakoid membranes isolated from winter rye grown at 20°C (non-hardened) and 5°C (cold-hardened). Differences were seen in the orientation of chlorophyll b relative to chlorophyll a. An increase in parallel absorption was identified at the long-wavelength chlorophyll a absorption peak, along with a decrease in parallel absorption from chlorophyll b chromophores. The same changes in relative pigment orientation were seen in the LD of isolated hardened and non-hardened light-harvesting antenna complexes (LHCII). It was concluded that orientational differences in LHCII pigments were responsible for thylakoid LD differences. Changes in pigment orientation, along with differences observed in long-wavelength absorption and in the overall magnitude of LD in hardened and non-hardened complexes, could be explained by the higher LHCII monomer:oligomer ratio in hardened rye (Huner et ai., 1987) if differences in this ratio affect differential light scattering properties, or fluctuation of chromophore orientation in the isolated LHCII sample.