2 resultados para Computer Aided Engineering and Design

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects oftwo types of small-group communication, synchronous computer-mediated and face-to-face, on the quantity and quality of verbal output were con^ared. Quantity was deiSned as the number of turns taken per minute, the number of Analysis-of-Speech units (AS-units) produced per minute, and the number ofwords produced per minute. Quality was defined as the number of words produced per AS-unit. In addition, the interaction of gender and type of communication was explored for any differences that existed in the output produced. Questionnaires were also given to participants to determine attitudes toward computer-mediated and face-to-face communication. Thirty intermediate-level students fi-om the Intensive English Language Program (lELP) at Brock University participated in the study, including 15 females and 15 males. Nonparametric tests, including the Wilcoxon matched-pairs test, Mann-Whitney U test, and Friedman test were used to test for significance at the p < .05 level. No significant differences were found in the effects of computer-mediated and face-to-face communication on the output produced during follow-up speaking sessions. However, the quantity and quality of interaction was significantly higher during face-to-face sessions than computer-mediated sessions. No significant differences were found in the output produced by males and females in these 2 conditions. While participants felt that the use of computer-mediated communication may aid in the development of certain language skills, they generally preferred face-to-face communication. These results differed fi-om previous studies that found a greater quantity and quality of output in addition to a greater equality of interaction produced during computer-mediated sessions in comparison to face-to-face sessions (Kern, 1995; Warschauer, 1996).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Dudding group is interested in the application of Density Functional Theory (DFT) in developing asymmetric methodologies, and thus the focus of this dissertation will be on the integration of these approaches. Several interrelated subsets of computer aided design and implementation in catalysis have been addressed during the course of these studies. The first of the aims rested upon the advancement of methodologies for the synthesis of biological active C(1)-chiral 3-methylene-indan-1-ols, which in practice lead to the use of a sequential asymmetric Yamamoto-Sakurai-Hosomi allylation/Mizoroki Heck reaction sequence. An important aspect of this work was the utilization of ortho-substituted arylaldehyde reagents which are known to be a problematic class of substrates for existing asymmetric allylation approaches. The second phase of my research program lead to the further development of asymmetric allylation methods using o-arylaldehyde substrates for synthesis of chiral C(3)-substituted phthalides. Apart from the de novo design of these chemistries in silico, which notably utilized water-tolerant, inexpensive, and relatively environmental benign indium metal, this work represented the first computational study of a stereoselective indium-mediated process. Following from these discoveries was the advent of a related, yet catalytic, Ag(I)-catalyzed approach for preparing C(3)-substituted phthalides that from a practical standpoint was complementary in many ways. Not only did this new methodology build upon my earlier work with the integrated (experimental/computational) use of the Ag(I)-catalyzed asymmetric methods in synthesis, it provided fundamental insight arrived at through DFT calculations, regarding the Yamamoto-Sakurai-Hosomi allylation. The development of ligands for unprecedented asymmetric Lewis base catalysis, especially asymmetric allylations using silver and indium metals, followed as a natural extension from these earlier discoveries. To this end, forthcoming as well was the advancement of a family of disubstituted (N-cyclopropenium guanidine/N-imidazoliumyl substituted cyclopropenylimine) nitrogen adducts that has provided fundamental insight into chemical bonding and offered an unprecedented class of phase transfer catalysts (PTC) having far-reaching potential. Salient features of these disubstituted nitrogen species is unprecedented finding of a cyclopropenium based C-H•••πaryl interaction, as well, the presence of a highly dissociated anion projected them to serve as a catalyst promoting fluorination reactions. Attracted by the timely development of these disubstituted nitrogen adducts my last studies as a PhD scholar has addressed the utility of one of the synthesized disubstituted nitrogen adducts as a valuable catalyst for benzylation of the Schiff base N-diphenyl methylene glycine ethyl ester. Additionally, the catalyst was applied for benzylic fluorination, emerging from this exploration was successful fluorination of benzyl bromide and its derivatives in high yields. A notable feature of this protocol is column-free purification of the product and recovery of the catalyst to use in a further reaction sequence.