3 resultados para Complex Design Space
em Brock University, Canada
Resumo:
Strategies designed to improve educational systems have created tensions in school personnel as they struggle to respond to competing demands of ongoing change within their daily realities. The purpose of this case study was to investigate how teachers and administrators in one elementary school made sense ofthese tensions and to explore the factors that constrained or shaped their responses. A constructive interpretative case study using a grounded theory approach was used. Qualitative data were collected through document analysis, semi-structured interviews, and participant observation. In-depth information about teachers' and administrators' experiences and a contextual understanding oftension was generated from inductive analysis of the data. The study found that tension was a phenomenon situated in the context in which it arose. A contextual understanding of tension revealed the interactions between the institutional, personal, and emotional domains that continually shaped individual and group behavioural responses. This contextual understanding of tension provided the means to reinterpret resistance to change. It also helped to show how teachers and administrators reconstructed identities and made sense in context.. Of particular note was the crucial nature of the conditions under which teachers and adlninistrators shaped meaning and understood change. This study sheds light on the contextual intricacies of tension that may help leaders with the complex design and implementation of educational change..
Resumo:
Interior illumination is a complex problem involving numerous interacting factors. This research applies genetic programming towards problems in illumination design. The Radiance system is used for performing accurate illumination simulations. Radiance accounts for a number of important environmental factors, which we exploit during fitness evaluation. Illumination requirements include local illumination intensity from natural and artificial sources, colour, and uniformity. Evolved solutions incorporate design elements such as artificial lights, room materials, windows, and glass properties. A number of case studies are examined, including many-objective problems involving up to 7 illumination requirements, the design of a decorative wall of lights, and the creation of a stained-glass window for a large public space. Our results show the technical and creative possibilities of applying genetic programming to illumination design.
Resumo:
This thesis describes two different approaches for the preparation of polynuclear clusters with interesting structural, magnetic and optical properties. Firstly, exploiting p-tert-butylcalix[4]arene (TBC4) macrocycles together with selected Ln(III) ions for the assembly of emissive single molecule magnets, and secondly the preparation and coordination of a chiral mpmH ligand with selected 3d transition metal ions, working towards the discovery of chiral polynuclear clusters. In Project 1, the coordination chemistry of the TBC4 macrocycle together with Dy(III) and Tb(III) afforded two Ln6[TBC4]2 complexes that have been structurally, magnetically and optically characterized. X-ray diffraction studies reveal that both complexes contain an octahedral core of Ln6 ions capped by two fully deprotonated TBC4 macrocycles. Although the unit cells of the two complexes are very similar, the coordination geometries of their Ln(III) ions are subtly different. Variable temperature ac magnetic susceptibility studies reveal that both complexes display single molecule magnet (SMM) behaviour in zero dc field and the energy barriers and associated pre-exponential factors for each relaxation process have been determined. Low temperature solid state photoluminescence studies reveal that both complexes are emissive; however, the f-f transitions within the Dy6 complex were masked by broad emissions from the TBC4 ligand. In contrast, the Tb(III) complex displayed green emission with the spectrum comprising four sharp bands corresponding to 5D4 → 7FJ transitions (where J = 3, 4, 5 and 6), highlighting that energy transfer from the TBC4 macrocycle to the Tb(III) ion is more effective than to Dy. Examples of zero field Tb(III) SMMs are scarce in the chemical literature and the Tb6[TBC4]2 complex represents the first example of a Tb(III) dual property SMM assembled from a p-tert-butylcalix[4]arene macrocycle with two magnetically derived energy barriers, Ueff of 79 and 63 K. In Project 2, the coordination of both enantiomers of the chiral ligand, α-methyl-2-pyridinemethanol (mpmH) to Ni(II) and Co(II) afforded three polynuclear clusters that have been structurally and magnetically characterized. The first complex, a Ni4 cluster of stoichiometry [Ni4(O2CCMe3)4(mpm)4]·H2O crystallizes in a distorted cubane topology that is well known in Ni(II) cluster chemistry. The final two Co(II) complexes crystallize as a linear mixed valence trimer with stoichiometry [Co3(mpm)6]·(ClO4)2, and a Co4 mixed valence complex [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2], whose structural topology resembles that of a defective double cubane. All three complexes crystallize in chiral space groups and circular dichroism experiments further confirm that the chirality of the ligand has been transferred to the respective coordination complex. Magnetic susceptibility studies reveal that for all three complexes, there are competing ferro- and antiferromagnetic exchange interactions. The [Co(II)¬2Co(III)2(NO3)2(μ-mpm)4(ONO2)2] complex represents the first example of a chiral mixed valence Co4 cluster with a defective double cubane topology.