19 resultados para Cognitive Control

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cognitive control involves the ability to flexibly adjust cognitive processing in order to resist interference and promote goal-directed behaviour. Although frontal cortex is considered to be broadly involved in cognitive control, the mechanisms by which frontal brain areas implement control functions are unclear. Furthermore, aging is associated with reductions in the ability to implement control functions and questions remain as to whether unique cortical responses serve a compensatory role in maintaining maximal performance in later years. Described here are three studies in which electrophysiological data were recorded while participants performed modified versions of the standard Sternberg task. The goal was to determine how top-down control is implemented in younger adults and altered in aging. In study I, the effects of frequent stimulus repetition on the interference-related N450 were investigated in a Sternberg task with a small stimulus set (requiring extensive stimulus resampling) and a task with a large stimulus set (requiring no stimulus resampling).The data indicated that constant stimulus res amp ling required by employing small stimulus sets can undercut the effect of proactive interference on the N450. In study 2, younger and older adults were tested in a standard version of the Sternberg task to determine whether the unique frontal positivity, previously shown to predict memory impairment in older adults during a proactive interference task, would be associated with the improved performance when memory recognition could be aided by unambiguous stimulus familiarity. Here, results indicated that the frontal positivity was associated with poorer memory performance, replicating the effect observed in a more cognitively demanding task, and showing that stimulus familiarity does not mediate compensatory cortical activations in older adults. Although the frontal positivity could be interpreted to reflect maladaptive cortical activation, it may also reflect attempts at compensation that fail to fully ameliorate agerelated decline. Furthermore, the frontal positivity may be the result of older adults' reliance on late occurring, controlled processing in contrast to younger adults' ability to identify stimuli at very early stages of processing. In the final study, working memory load was manipulated in the proactive interference Sternberg task in order to investigate whether the N450 reflects simple interference detection, with little need for cognitive resources, or an active conflict resolution mechanism that requires executive resources to implement. Independent component analysis was used to isolate the effect of interference revealing that the canonical N450 was based on two dissociable cognitive control mechanisms: a left frontal negativity that reflects active interference resolution, , but requires executive resources to implement, and a right frontal negativity that reflects global response inhibition that can be relied on when executive resources are minimal but at the cost of a slowed response. Collectively, these studies advance understanding of the factors that influence younger and older adults' ability to satisfy goal-directed behavioural requirements in the face of interference and the effects of age-related cognitive decline.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Accuracy at reporting a second-target (T2) is reduced if it is presented within approximately 500 ms of the first target (T1) – an attentional blink (AB). Early models explained the AB in terms of attentional limitations creating a processing bottleneck such that T2 processing would be impaired while T1 processing was ongoing. Theoretical models of the AB have more recently been expanded to include the role of cognitive control. In this dissertation I propose that cognitive control, defined as the optimization of information processing in order to achieve goals, is maladapted to the dual-task conditions of the AB task in that cognitive control optimizes the T1 goal, due to its temporal proximity, at the cost of T2. I start with the concept that the role of cognitive control is to serve goals, and that how goals are conceived of and the degree of motivation associated with those goals will determine whether cognitive control will create the condition that cause the AB. This leads to the hypothesis that electrophysiological measures of cognitive control and the degree of attentional investment resulting from cognitive control modulate the AB and explain individual differences in the AB. In a series of four studies feedback-related N2 amplitude, (reflecting individual differences in the strength of cognitive control), and event-related and resting alpha frequency oscillatory activity (reflecting degree of attentional investment), are used to explain both intra- and inter-individual variability in performance on the AB task. Results supported the hypothesis that stronger cognitive control and greater attentional investment are associated with larger AB magnitudes. Attentional investment, as measured by alpha frequency oscillations, and cognitive control, as measured by the feedback-related N2, did not relate to each other as hypothesized. It is proposed that instead of a measure of attentional investment alone, alpha frequency oscillatory activity actually reflects control over information processing over time, in other words the timing of attention. With this conceptualization, various aspects of cognitive control, either related to the management of goals (feedback-related N2) or the management of attention over time to meet goals, explain variability in the AB.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis tested a model of neurovisceral integration (Thayer & Lane, 2001) wherein parasympathetic autonomic regulation is considered to play a central role in cognitive control. We asked whether respiratory sinus arrhythmia (RSA), a parasympathetic index, and cardiac workload (rate pressure product, RPP) would influence cognition and whether this would change with age. Cognitive control was measured behaviourally and electrophysiologically through the error-related negativity (ERN) and error positivity (Pe). The ERN and Pe are thought to be generated by the anterior cingulate cortex (ACC), a region involved in regulating cognitive and autonomic control and susceptible to age-related change. In Study 1, older and younger adults completed a working memory Go/NoGo task. Although RSA did not relate to performance, higher pre-task RPP was associated with poorer NoGo performance among older adults. Relations between ERN/Pe and accuracy were indirect and more evident in younger adults. Thus, Study 1 supported the link between cognition and autonomic activity, specifically, cardiac workload in older adults. In Study 2, we included younger adults and manipulated a Stroop task to clarify conditions under which associations between RSA and performance will likely emerge. We varied task parameters to allow for proactive versus reactive strategies, and motivation was increased via financial incentive. Pre-task RSA predicted accuracy when response contingencies required maintenance of a specific item in memory. Thus, RSA was most relevant when performance required proactive control, a metabolically costly strategy that would presumably be more reliant on autonomic flexibility. In Study 3, we included older adults and examined RSA and proactive control in an additive factors framework. We maintained the incentive and measured fitness. Higher pre-task RSA among older adults was associated with greater accuracy when proactive control was needed most. Conversely, performance of young women was consistently associated with fitness. Relations between ERN/Pe and accuracy were modest; however, isolating ACC activity via independent component analysis allowed for more associations with accuracy to emerge in younger adults. Thus, performance in both groups appeared to be differentially dependent on RSA and ACC activation. Altogether, these data are consistent with a neurovisceral integration model in the context of cognitive control.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Whereas the role of the anterior cingulate cortex (ACC) in cognitive control has received considerable attention, much less work has been done on the role of the ACC in autonomic regulation. Its connections through the vagus nerve to the sinoatrial node of the heart are thought to exert modulatory control over cardiovascular arousal. Therefore, ACC is not only responsible for the implementation of cognitive control, but also for the dynamic regulation of cardiovascular activity that characterizes healthy heart rate and adaptive behaviour. However, cognitive control and autonomic regulation are rarely examined together. Moreover, those studies that have examined the role of phasic vagal cardiac control in conjunction with cognitive performance have produced mixed results, finding relations for specific age groups and types of tasks but not consistently. So, while autonomic regulatory control appears to support effective cognitive performance under some conditions, it is not presently clear just what factors contribute to these relations. The goal of the present study was, therefore, to examine the relations between autonomic arousal, neural responsivity, and cognitive performance in the context of a task that required ACC support. Participants completed a primary inhibitory control task with a working memory load embedded. Pre-test cardiovascular measures were obtained, and ontask ERPs associated with response control (N2/P3) and error-related processes (ERN/Pe) were analyzed. Results indicated that response inhibition was unrelated to phasic vagal cardiac control, as indexed by respiratory sinus arrhythmia (RSA). However, higher resting RSA was associated with larger ERN ampUtude for the highest working memory load condition. This finding suggests that those individuals with greater autonomic regulatory control exhibited more robust ACC error-related responses on the most challenging task condition. On the other hand, exploratory analyses with rate pressure product (RPP), a measure of sympathetic arousal, indicated that higher pre-test RPP (i.e., more sympathetic influence) was associated with more errors on "catch" NoGo trials, i.e., NoGo trials that simultaneously followed other NoGo trials, and consequently, reqviired enhanced response control. Higher pre-test RPP was also associated with smaller amplitude ERNs for all three working memory loads and smaller ampUtude P3s for the low and medium working memory load conditions. Thus, higher pretest sympathetic arousal was associated with poorer performance on more demanding "catch" NoGo trials and less robust ACC-related electrocortical responses. The findings firom the present study highlight tiie interdependence of electrocortical and cardiovascular processes. While higher pre-test parasympathetic control seemed to relate to more robust ACC error-related responses, higher pre-test sympathetic arousal resulted in poorer inhibitory control performance and smaller ACC-generated electrocortical responses. Furthermore, these results provide a base from which to explore the relation between ACC and neuro/cardiac responses in older adults who may display greater variance due to the vulnerabihty of these systems to the normal aging process.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Age-related differences in information processing have often been explained through deficits in older adults' ability to ignore irrelevant stimuli and suppress inappropriate responses through inhibitory control processes. Functional imaging work on young adults by Nelson and colleagues (2003) has indicated that inferior frontal and anterior cingulate cortex playa key role in resolving interference effects during a delay-to-match memory task. Specifically, inferior frontal cortex appeared to be recruited under conditions of context interference while the anterior cingulate was associated with interference resolution at the stage of response selection. Related work has shown that specific neural activities related to interference resolution are not preserved in older adults, supporting the notion of age-related declines in inhibitory control (Jonides et aI., 2000, West et aI., 2004b). In this study the time course and nature of these inhibition-related processes were investigated in young and old adults using high-density ERPs collected during a modified Sternberg task. Participants were presented with four target letters followed by a probe that either did or did not match one of the target letters held in working memory. Inhibitory processes were evoked by manipulating the nature of cognitive conflict in a particular trial. Conflict in working memory was elicited through the presentation of a probe letter in immediately previous target sets. Response-based conflict was produced by presenting a negative probe that had just been viewed as a positive probe on the previous trial. Younger adults displayed a larger orienting response (P3a and P3b) to positive probes relative to a non-target baseline. Older adults produced the orienting P3a and 3 P3b waveforms but their responses did not differentiate between target and non-target stimuli. This age-related change in response to targetness is discussed in terms of "early selection/late correction" models of cognitive ageing. Younger adults also showed a sensitivity in their N450 response to different levels of interference. Source analysis of the N450 responses to the conflict trials of younger adults indicated an initial dipole in inferior frontal cortex and a subsequent dipole in anterior cingulate cortex, suggesting that inferior prefrontal regions may recruit the anterior cingulate to exert cognitive control functions. Individual older adults did show some evidence of an N450 response to conflict; however, this response was attenuated by a co-occurring positive deflection in the N450 time window. It is suggested that this positivity may reflect a form of compensatory activity in older adults to adapt to their decline in inhibitory control.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Imaging studies have shown reduced frontal lobe resources following total sleep deprivation (TSD). The anterior cingulate cortex (ACC) in the frontal region plays a role in performance monitoring and cognitive control; both error detection and response inhibition are impaired following sleep loss. Event-related potentials (ERPs) are an electrophysiological tool used to index the brain's response to stimuli and information processing. In the Flanker task, the error-related negativity (ERN) and error positivity (Pe) ERPs are elicited after erroneous button presses. In a Go/NoGo task, NoGo-N2 and NoGo-P3 ERPs are elicited during high conflict stimulus processing. Research investigating the impact of sleep loss on ERPs during performance monitoring is equivocal, possibly due to task differences, sample size differences and varying degrees of sleep loss. Based on the effects of sleep loss on frontal function and prior research, it was expected that the sleep deprivation group would have lower accuracy, slower reaction time and impaired remediation on performance monitoring tasks, along with attenuated and delayed stimulus- and response-locked ERPs. In the current study, 49 young adults (24 male) were screened to be healthy good sleepers and then randomly assigned to a sleep deprived (n = 24) or rested control (n = 25) group. Participants slept in the laboratory on a baseline night, followed by a second night of sleep or wake. Flanker and Go/NoGo tasks were administered in a battery at 1O:30am (i.e., 27 hours awake for the sleep deprivation group) to measure performance monitoring. On the Flanker task, the sleep deprivation group was significantly slower than controls (p's <.05), but groups did not differ on accuracy. No group differences were observed in post-error slowing, but a trend was observed for less remedial accuracy in the sleep deprived group compared to controls (p = .09), suggesting impairment in the ability to take remedial action following TSD. Delayed P300s were observed in the sleep deprived group on congruent and incongruent Flanker trials combined (p = .001). On the Go/NoGo task, the hit rate (i.e., Go accuracy) was significantly lower in the sleep deprived group compared to controls (p <.001), but no differences were found on false alarm rates (i.e., NoGo Accuracy). For the sleep deprived group, the Go-P3 was significantly smaller (p = .045) and there was a trend for a smaller NoGo-N2 compared to controls (p = .08). The ERN amplitude was reduced in the TSD group compared to controls in both the Flanker and Go/NoGo tasks. Error rate was significantly correlated with the amplitude of response-locked ERNs in control (r = -.55, p=.005) and sleep deprived groups (r = -.46, p = .021); error rate was also correlated with Pe amplitude in controls (r = .46, p=.022) and a trend was found in the sleep deprived participants (r = .39, p =. 052). An exploratory analysis showed significantly larger Pe mean amplitudes (p = .025) in the sleep deprived group compared to controls for participants who made more than 40+ errors on the Flanker task. Altered stimulus processing as indexed by delayed P3 latency during the Flanker task and smaller amplitude Go-P3s during the Go/NoGo task indicate impairment in stimulus evaluation and / or context updating during frontal lobe tasks. ERN and NoGoN2 reductions in the sleep deprived group confirm impairments in the monitoring system. These data add to a body of evidence showing that the frontal brain region is particularly vulnerable to sleep loss. Understanding the neural basis of these deficits in performance monitoring abilities is particularly important for our increasingly sleep deprived society and for safety and productivity in situations like driving and sustained operations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The relevance of attentional measures to cognitive and social adaptive behaviour was examined in an adolescent sample. Unlike previous research, the influence of both inhibitory and facilitory aspects of attention were studied. In addition, contributions made by these attentional processes were compared with traditional psychometric measures of cognitive functioning. Data were gathered from 36 grade 10 and 1 1 high school students (20 male and 16 female students) with a variety of learning and attentional difficulties. Data collection was conducted in the course of two testing sessions. In the first session, students completed questionnaires regarding their medical history, and everyday behaviours (the Brock Adaptive Functioning Questionnaire), along with non-verbal problem solving tasks and motor speed tasks. In the second session, students performed working memory measures and computer-administered tasks assessing inhibitory and facilitory aspects of attention. Grades and teacher-rated measures of cognitive and social impulsivity were also gathered. Results indicate that attentional control has both cognitive and social/emotional implications. Performance on negative priming and facilitation trials from the Flanker task predicted grades in core courses, social functioning measures, and cognitive and social impulsivity ratings. However, beneficial effects for academic and social functioning associated with inhibition were less prevalent in those demonstrating a greater ability to respond to facilitory cues. There was also some evidence that high levels of facilitation were less beneficial to academic performance, and female students were more likely to exceed optimal levels of facilitory processing. Furthermore, lower negative priming was ''S'K 'i\':y-: -'*' - r " j«v ; ''*.' iij^y Inhibition, Facilitation and Social Competence 3 associated with classroom-rated distraction and hyperactivity, but the relationship between inhibition and social aspects of impulsivity was stronger for adolescents with learning or reading problems, and the relationship between inhibition and cognitive impulsivity was stronger for male students. In most cases, attentional measures were predictive of performance outcomes independent of traditional psychometric measures of cognitive functioning. >,, These findings provide support for neuropsychological models linking inhibition to control of interference and arousal, and emphasize the fundamental role of attention in everyday adolescent activities. The findings also warrant further investigation into the ways which inhibitory and facilitory attentional processes interact, and the contextdependent nature of attentional control.associated with classroom-rated distraction and hyperactivity, but the relationship between inhibition and social aspects of impulsivity was stronger for adolescents with learning or reading problems, and the relationship between inhibition and cognitive impulsivity was stronger for male students. In most cases, attentional measures were predictive of performance outcomes independent of traditional psychometric measures of cognitive functioning. >,, These findings provide support for neuropsychological models linking inhibition to control of interference and arousal, and emphasize the fundamental role of attention in everyday adolescent activities. The findings also warrant further investigation into the ways which inhibitory and facilitory attentional processes interact, and the contextdependent nature of attentional control.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Research has noted both physical and psychosocial benefits when children participate in regular physical activity. Recent studies are indicating that there may also be academic benefits and that students may be more efficient learners with participation in physical activity. This study investigated the influence of acute moderate-to-vigorous physical activity on four cognitive functions: planning, attention, simultaneous processing, and successive processing. Three classes (59 students) were each tested twice using a balanced design (intervention, balance, and control groups). It was found that the intervention group had a large increase in planning abiHty (ES = 1.67) when compared to the balance (ES = .80) and control (ES = -.89) groups. On the three remaining cognitive functions, the intervention group showed effect sizes similar to that of the balance and control groups. These results indicate that improved planning after physical activity may playa role in improving student performance.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A cognitively based instructional program for narrative writing was developed. The effects of using cognitively based schematic planning organizers at the pre-writing stage were evaluated using subjects from the Primary, Junior and Intermediate divisions. Results indicate that the use of organizers based on problem solving significantly improved the organization and the overall quality of narrative writing for students in grades 3, 6 and 7. The magnitude of the improvement of the treatment group over the control group performance in Organization ranged from 10.7% to 22.9%. Statistical and observational data indicate many implications for further research into the cognitive basis for writing and reading; for the improvement and evaluation of school writing programs; for the design of school curricula; and for the inservice education for teachers of writing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

years 8 months) and 24 older (M == 7 years 4 months) children. A Monitoring Process Model (MPM) was developed and tested in order to ascertain at which component process ofthe MPM age differences would emerge. The MPM had four components: (1) assessment; (2) evaluation; (3) planning; and (4) behavioural control. The MPM was assessed directly using a referential communication task in which the children were asked to make a series of five Lego buildings (a baseline condition and one building for each MPM component). Children listened to instructions from one experimenter while a second experimenter in the room (a confederate) intetjected varying levels ofverbal feedback in order to assist the children and control the component ofthe MPM. This design allowed us to determine at which "stage" ofprocessing children would most likely have difficulty monitoring themselves in this social-cognitive task. Developmental differences were obselVed for the evaluation, planning and behavioural control components suggesting that older children were able to be more successful with the more explicit metacomponents. Interestingly, however, there was no age difference in terms ofLego task success in the baseline condition suggesting that without the intelVention ofthe confederate younger children monitored the task about as well as older children. This pattern ofresults indicates that the younger children were disrupted by the feedback rather than helped. On the other hand, the older children were able to incorporate the feedback offered by the confederate into a plan ofaction. Another aim ofthis study was to assess similar processing components to those investigated by the MPM Lego task in a more naturalistic observation. Together the use ofthe Lego Task ( a social cognitive task) and the naturalistic social interaction allowed for the appraisal of cross-domain continuities and discontinuities in monitoring behaviours. In this vein, analyses were undertaken in order to ascertain whether or not successful performance in the MPM Lego Task would predict cross-domain competence in the more naturalistic social interchange. Indeed, success in the two latter components ofthe MPM (planning and behavioural control) was related to overall competence in the naturalistic task. However, this cross-domain prediction was not evident for all levels ofthe naturalistic interchange suggesting that the nature ofthe feedback a child receives is an important determinant ofresponse competency. Individual difference measures reflecting the children's general cognitive capacity (Working Memory and Digit Span) and verbal ability (vocabulary) were also taken in an effort to account for more variance in the prediction oftask success. However, these individual difference measures did not serve to enhance the prediction oftask performance in either the Lego Task or the naturalistic task. Similarly, parental responses to questionnaires pertaining to their child's temperament and social experience also failed to increase prediction oftask performance. On-line measures ofthe children's engagement, positive affect and anxiety also failed to predict competence ratings.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recent research on the sources of cognitive competence in infancy and early childhood has highlighted the role of social and emotional factors (for example, Lewis, 1993b). Exploring the roots of competence requires a longitudinal and multivariate approach. To deal with the resulting complexity, potentially integrative theoretical constructs are required. One logical candidate is self-regulation. Three key developmental questions were the focus of this investigation. 1) Does infant self-regulation (attentional, emotional, and social) predict preschool cognitive competence? 2) Does infant self-regulation predict preschool self-regulation? 3) Does preschool self-regulation predict concurrent preschool cognitive competence? One hundred preschoolers (46 females, 54 males; mean age = 5 years, 11 months) who had participated at 9- and/ or 12-months of age in an object permanence task were recruited to participate in this longitudinal investigation. Each subject completed four scales of the WPPSI-R and two social cognitive tasks. Parents completed questionnaires about their preschoolers' regulatory behaviours (Achenbach's Child Behavior Checklist [1991] and selected items from Eisenberg et ale [1993] and Derryberry & Rothbart [1988]). Separate behavioural coding systems were developed to capture regulatory capabilities in infancy (from the object permanence task) and preschool (from the WPPSIR Block Design). Overall, correlational and multiple regression results offered strong affirmative answers to the three key questions (R's = .30 to .38), using the behavioural observations of self-regulation. Behavioural regulation at preschool substantially predicted parental reports of regulation, but the latter variables did not predict preschool competence. Infant selfregulation and preschool regulation made statistically independent contributions to competence, even though regulation at Time 1 and Time 2 ii were substantially related. The results are interpreted as supporting a developmental pathway in which well-regulated infants more readily acquire both expertise and more sophisticated regulatory skills. Future research should address the origins of these skills earlier in infancy, and the social contexts that generate them and support them during the intervening years.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Daytime napping improves well-being and performance for young adults. The benefits of napping in older adults should be investigated because they have fragmented nocturnal sleep, cognitive declines, and more opportunity to nap. In addition, experience with napping might influence the benefits of napping. Study 1 examined the role of experience with napping in young adults. Habitual (n = 23) and non-habitual nappers (n = 16) were randomly assigned to a 20-minute nap or a 20- minute reading condition. Both groups slept the same according to macro architecture. However, microarchitecture showed greater theta, alpha, and beta power during Stage 1, and greater delta, alpha, and sigma power during Stage 2 for habitual nappers, for the most part indicating better sleep. Both groups felt less sleepy after the nap. P2 latency, reflecting information processing, decreased after the nap for habitual nappers, and after the control condition for non-habitual nappers. In sum, both groups who slept felt better, but only the habitual nappers who napped gained a benefit in terms of information processing. Based on this outcome, experience with napping was investigated in Study 2. Study 2 examined the extent to which daytime napping enhanced cognition in older adults, especially frontal lobe function. Cognitive deficits in older adults may be due to sleep loss and age-related decline in brain functioning. Longer naps were expected to provide greater improvement, particularly for older adults, by reducing sleep pressure. Thirty-two adults, aged 24-70 years, participated in a repeated measures dose-response manipulation of sleep pressure. Twenty- and sixty-minute naps were compared to a no-nap condition in three age groups. Mood, subjective sleepiness, reaction time, working memory, 11 novelty detection, and waking electro physiological measures were taken before and after each condition. EEG was also recorded during each nap or rest condition. Napping reduced subjective sleepiness, improved working memory (serial addition / subtraction task), and improved attention (reduced P2 amplitude). Physiological sleepiness (i.e., waking theta power) increased following the control condition, and decreased after the longer nap. Increased beta power after the short nap, and seen with older adults overall, may have reflected increased mental effort. Older adults had longer latencies and smaller amplitudes for several event-related potential components, and higher beta and gamma power. Following the longer nap, gamma power decreased for older adults, but increased for young adults. Beta and gamma power may represent enhanced alertness or mental effort. In addition, Nl amplitude showed that benefits depend on the preceding nap length as well as age. Since the middle group had smaller Nl amplitudes following the short nap and rest condition, it is possible that they needed a longer nap to maintain alertness. Older adults did not show improvements to Nl amplitude following any condition; they may have needed a nap longer than 60 minutes to gain benefits to attention or early information processing. Sleep characteristics were not related to benefits of napping. Experience with napping was also investigated. Subjective data confirmed habitual nappers were happier to nap, while non-habitual nappers were happier to stay awake, reflecting self-identified napping habits. Non-habitual nappers were sleepier after a nap, and had faster brain activity (i.e., heightened vigilance) at sleep onset. These reasons may explain why non-habitual nappers choose not to nap.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sleep spindles have been found to increase following an intense period of learning on a combination of motor tasks. It is not clear whether these changes are task specific, or a result of learning in general. The current study investigated changes in sleep spindles and spectral power following learning on cognitive procedural (C-PM), simple procedural (S-PM) or declarative (DM) learning tasks. It was hypothesized that S-PM learning would result in increases in Sigma power during Non-REM sleep, whereas C-PM and DM learning would not affect Sigma power. It was also hypothesized that DM learning would increase Theta power during REM sleep, whereas S-PM and C-PM learning would not affect Theta power. Thirty-six participants spent three consecutive nights in the sleep laboratory. Baseline polysomnographic recordings were collected on night 2. Participants were randomly assigned to one of four conditions: C-PM, S-PM, DM or control (C). Memory task training occurred on night 3 followed by polysomnographic recording. Re-testing on respective memory tasks occurred one-week following training. EEG was sampled at 256Hz from 16 sites during sleep. Artifact-free EEG from each sleep stage was submitted to power spectral analysis. The C-PM group made significantly fewer errors, the DM group recalled more, and the S-PM improved on performance from test to re-test. There was a significant night by group interaction for the duration of Stage 2 sleep. Independent t-tests revealed that the S-PM group had significantly more Stage 2 sleep on the test night than the C group. The C-PM and the DM group did not differ from controls in the duration of Stage 2 sleep on test night. There was no significant change in the duration of slow wave sleep (SWS) or REM sleep. Sleep spindle density (spindles/minute) increased significantly from baseline to test night following S-PM learning, but not for C-PM, DM or C groups. This is the first study to have shown that the same pattern of results was found for spindles in SWS. Low Sigma power (12-14Hz) increased significantly during SWS following S-PM learning but not for C-PM, DM or C groups. This effect was maximal at Cz, and the largest increase in Sigma power was at Oz. It was also found that Theta power increased significantly during REM sleep following DM learning, but not for S-PM, C-PM or C groups. This effect was maximal at Cz and the largest change in Theta power was observed at Cz. These findings are consistent with the previous research that simple procedural learning is consolidated during Stage 2 sleep, and provide additional data to suggest that sleep spindles across all non-REM stages and not just Stage 2 sleep may be a mechanism for brain plasticity. This study also provides the first evidence to suggest that Theta activity during REM sleep is involved in memory consolidation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is well established that postural threat modifies postural control, although little is known regarding the underlying mechanism(s) responsible. It is possible that changes in postural control under conditions of elevated postural threat result from alterations in cognitive strategies. The purpose of this study was to determine the influence of elevated postural threat on cognitive strategies and to determine the relationship between postural control, psychological, and cognitive measures. It was hypothesized that elevated postural threat would cause a shift to more conscious control of posture. It was also expected that a relationship between fear of falling and postural control would exist that could be explained by changes in conscious control of posture. Forty-eight healthy young adults stood on a force plate at two different surface heights: ground level (LOW) and 3.2m above ground level (HIGH). Center of pressure (COP) summary measures calculated to quantify postural control were the mean position (AP-COP MP), root mean square (AP-COP RMS) and mean power frequency (AP-COP MPF) in the anteriorposterior direction. Trunk sway measures calculated in the pitch direction were trunk angle and trunk velocity. Psychological measures including perceived balance confidence, perceived fear of falling, perceived anxiety, and perceived stability were self reported. As a physiological indicator of anxiety, electrodermal activity was collected. The cognitive strategies assessed were movement reinvestment and attention focus. A modified state-sp-ecific version of the Movement Specific Reinvestment Scale was used to measure conscious motor processing (CMP) and movement self-consciousness (MSC). An attention focus questionnaire was developed to assess the amount of attention directed to internal and external sources. An effect of postural threat on cognitive strategies was observed as participants reported more conscious control and a greater concern or worry about their posture at the HIGH postural threat condition as well as an increased internal and external focus of attention. In addition changes in postural control, psychological, and physiological measures were found. The participants leaned away from the edge of the platform, the frequency of their postural adjustments increased, and the velocity of their trunk movements increased. Participants felt less confident, more fearful, more anxious, and less stable with an accompanying increase in physiological anxiety. Significant correlations between perceived anxiety, AP-COP MP, and cognitive measures revealed a possible relationship that could be mediated by cognitive measures. It was found that with greater conscious motor processing, more movement self-consciousness, and a greater amount of attention focused externally there was a larger shift of the mean position away from the edge of the platform. This thesis provides evidence that postural threat can influence cognitive strategies causing a shift to more conscious control of movement which is associated with leaning away from the edge of the platform. Shifting the position of the body away from the direction of the postural threat may reflect a cognitive strategy to ensure safety in this situation due to the inability to employ a stepping strategy when standing on an elevated platform.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present research was designed to examine whether sex and/or emotional valence pl aya role in the cognitive consequences (e.g., memory) of expressive suppression. Seventy-two (36 male and 36 female) undergraduates were randomly assigned to either a control or expressive suppression condition, and were asked to watch silent film clips intended to elicit amusement and disgust. While watching each film, participants listened to sixteen nonemotional words. After each film, participants were asked to answer questions about wha t they had seen in the film (visual memory), to recall as many words as they could (auditory recall memory), and to select from a list any words that they had heard during the previous film clip (auditory recognition memory). With regard to the effects of expressive suppression on visual memory, results indicated a 3-way interaction between condition, sex and film emotion: Men performed more poorly than women on the visual memory test after watching both the amusing and disgusting films in the control condition, and when watching the amusing film in the expressive suppression condition. However, men in the expressive suppression condition performed better than women after watching the disgusting film. In terms of the effects of expressive suppression on auditory memory (recognition and recall), a condition x film emotion interaction indicated that there was no difference in auditory memory for the expressive suppression and control conditions when watching the amusing film, but that the expressive suppression group showed poorer auditory memory than the control group for words presented during the disgusting film. Moreover, a ma in effect of sex on auditory memory suggested that men recalled and recognized more words than women across conditions. Taken together, these findings suggest that both sex and the emotional valence of films may influence the effects of expressive suppression on memory. Results will be discussed in the context of previous literature concerning the effects of expressive suppression on cognition.