8 resultados para Climate change reparation scheme
em Brock University, Canada
Resumo:
Thesis (M.Sc.)--Brock University, 2004.
Resumo:
A distinctive period of global change occurred during the PUocene between the warm Miocene and subsequent Quaternary cooling. Samples from Ocean Drilling Project Site 11 79 (-5586 mbsl, 41°4'N, 159°57'E), Site 881 (-5765 mbsl, 47°6.133'N, 161°29.490'E) and Site 882 (-3255 mbsl, 50°22'N, 167°36'E) were studied to determine the magnitude and composition ofterrigenous flux to the western mid-latitude North Pacific and its relation to climate change in East Asia since the mid-Pliocene. Dust-sized particles (including pollen), sourced from the arid regions and loess plateaus in East Asia are entrained by prevailing westerly winds and transported to the midlatitude northwest North Pacific Ocean. This is recorded by peaks in the total concentration of pollen and spores, as well as the mean grain size of allochthonous and autochthonous silicate material in abyssal marine sediments. Aridification of the Asian interior due to the phased uplift of the Himalayan-Tibetan Plateau created the modem East Asian Monsoon system dominated by a strengthening of the winter monsoon. The winter monsoon is further enhanced during glacials due to the expansion of desert and steppe environments at the expense ofwoodlands and forests recorded by the composition of palynological assemblages. The late Pliocene-Pleistocene glacials at ODP Sites 1 179, 881, and 882 are characterized by increases in grain size, magnetic susceptibility, pollen and spore concentrations around 3.5-3.3, 2.6-2.4, 1.7-1.6, and 0.9-0.7 Ma (ages based on magnetostratigraphic and biostratigraphic datums). The peaks during these times are relatively rich in pollen taxa derived primarily from steppe and boreal vegetation zones, recording cool, dry climates. The overall size increase of sediment and abundance of terrestrial palynomorphs record enhanced wind strength. The increase in magnitude of pollen and spore concentrations as well as grain size record global cooling and Northern Hemisphere glaciation. The peaks in grain size as well as pollen and spore abundance in marine sediments correlate with the mean grain size of loess in East Asia, consistent with the deflation of unarmoured surfaces during glacials. The transport of limiting nutrients to marine environments enhanced sea surface productivity and increased the rate of sediment accumulation.
Resumo:
Various lake phases have developed in the upper Great Lakes in response to isostatic adjustment and changes in water supply since the retreat of the Laurentide Ice Sheet. Georgian Bay experienced a lowstand that caused a basin wide unconformity approximately 7,500 years ago that cannot be explained by geological events. Thecamoebians are shelled protozoans abundant in freshwater environments and they are generally more sensitive to changing environmental conditions than the surrounding vegetation. Thecamoebians can be used to reconstruct the paleolimnology. The abundance of thecamoebians belonging to the genus Centropyxis, which are known to tolerate slightly brackish conditions (i.e. high concentrations of ions) records highly evaporative conditions in a closed basin. During the warmer interval (9000 to 700 yBP), the Centropyxis - dominated population diminishes and is replaced by an abundant and diverse Difflugia dominate population. Historical climate records from Tobermory and Midland, Ontario were correlated with the Lake Huron water level curve. The fossil pollen record and comparison with modem analogues allowed a paleo-water budget to be calculated for Georgian Bay. Transfer function analysis of fossil pollen data from Georgian Bay records cold, dry winters similar to modem day Minneapolis, Minnesota. Drier climates around this time are also recorded in bog environments in Southem Ontario - the drying of Lake Tonawanda and inception of paludification in Willoughby Bog, for instance, dates around 7,000 years ago. The dramatic impact of climate change on the water level in Georgian Bay underlines the importance of paleoclimatic research for predicting future environmental change in the Great Lakes.
Resumo:
With scientific consensus supporting a 4oC increase in global mean temperature over the next century and increased frequency of severe weather events, adaptation to climate change is critical. Given the dynamic and complex nature of climate change, a transdisciplinary approach toward adaptation can create an environment that supports knowledge sharing and innovation, improving existing strategies and creating new ones. The Ontario wine industry provides a case study to illustrate the benefits of this approach. We describe the formation and work of the Ontario Grape and Wine Research Network within this context, and present some preliminary results to highlight the opportunities for innovation that will drive the successful adaption of the Ontario grape and wine industry.
Resumo:
The global wine industry is experiencing the impacts of climate change. Canada’s major wine sector, the Ontario Wine Industry (OWI) is no exception to this trend. Warmer winter and summer temperatures are affecting wine production. The industry needs to adapt to these challenges, but their capacity for this is unclear. To date, only a limited number of studies exist regarding the adaptive capacity of the wine industry to climate change. Accordingly, this study developed an adaptive capacity assessment framework for the wine industry. The OWI became the case study for the implementation of the assessment framework. Data was obtained by means of a questionnaire sent to grape growers, winemakers and supporting institutions in Ontario. The results indicated the OWI has adaptive capacity capabilities in financial, institutional, political, technological, perceptions, knowledge, diversity and social capital resources areas. Based on the OWI case study, this framework provides an effective means of assessing regional wine industries’ capacity to adapt to climate change.
Resumo:
Adaptive systems of governance are increasingly gaining attention in respect to complex and uncertain social-ecological systems. Adaptive co-management is one strategy to make adaptive governance operational and holds promise with respect to community climate change adaptation as it facilitates participation and learning across scales and fosters adaptive capacity and resilience. Developing tools which hasten the realization of such approaches are growing in importance. This paper describes explores the Social Ecological Inventory (SEI) as a tool to 'prime' a regional climate change adaptation network. The SEI tool draws upon the social-ecological systems approach in which social and ecological systems are considered linked. SEIs bridge the gap between conventional stakeholder analysis and biological inventories and take place through a six phase process. A case study describes the results of applying an SEI to prime an adaptive governance network for climate change adaptation in the Niagara Region of Canada. Lessons learned from the case study are discussed and highlight how the SEI catalyzed the adaptive co-management process in the case. Future avenues for SEIs in relation to climate change adaptation emerge from this exploratory work and offer opportunities to inform research and adaptation planning.
Resumo:
Analysis of power in natural resources management is important as multiple stakeholders interact within complex, social-ecological systems. As a sub-set of these interactions, community climate change adaptation is increasingly using participatory processes to address issues of local concern. While some attention has been paid to power relations in this respect, e.g. evaluating international climate regimes or assessing vulnerability as part of integrated impact assessments, little attention has been paid to how a structured assessment of power could facilitate real adaptation and increase the potential for successful participatory processes. This paper surveys how the concept of power is currently being applied in natural resources management and links these ideas to agency and leadership for climate change adaptation. By exploring behavioural research on destructive leadership, a model is developed for informing participatory climate change adaptation. The working paper then concludes with a discussion of developing research questions in two specific areas - examining barriers to adaptation and mapping the evolution of specific participatory processes for climate change adaptation.
Resumo:
Sluice Pond is a small (18 ha) and deep (Zmax 20.0 m) partially meromictic, pond in Lynn, Massachusetts that contains a diverse dinocyst record since the early Holocene. High dinocyst concentrations, including morphotypes not previously described, as well as the preservation of several specimens of cellulosic thecae are attributed to low dissolved oxygen (DO) in the basin. The fossil protozoan record supports the interpretation- thecamoebians were unable to colonize the basin until the middle Holocene and only became abundant when the drought-induced lowstand oxygenated the bottom waters. Protozoans tolerant of low DO became abundant through the late Holocene as water levels rose and cultural eutrophication produced a sharp increase in biochemical oxygen demand (BOD) beginning in the 17th century. Recent sediments contain a dominance of Peridinium willei, indicating cultural eutrophication and the planktonic ciliate Codonella cratera and the thecamoebian Cucurbitella tricuspis in the deep basin. Above the chemocline however, a diverse difflugiid thecamoebian assemblage is present.