3 resultados para Classification image technique
em Brock University, Canada
Resumo:
Confocal and two-photon microcopy have become essential tools in biological research and today many investigations are not possible without their help. The valuable advantage that these two techniques offer is the ability of optical sectioning. Optical sectioning makes it possible to obtain 3D visuahzation of the structiu-es, and hence, valuable information of the structural relationships, the geometrical, and the morphological aspects of the specimen. The achievable lateral and axial resolutions by confocal and two-photon microscopy, similar to other optical imaging systems, are both defined by the diffraction theorem. Any aberration and imperfection present during the imaging results in broadening of the calculated theoretical resolution, blurring, geometrical distortions in the acquired images that interfere with the analysis of the structures, and lower the collected fluorescence from the specimen. The aberrations may have different causes and they can be classified by their sources such as specimen-induced aberrations, optics-induced aberrations, illumination aberrations, and misalignment aberrations. This thesis presents an investigation and study of image enhancement. The goal of this thesis was approached in two different directions. Initially, we investigated the sources of the imperfections. We propose methods to eliminate or minimize aberrations introduced during the image acquisition by optimizing the acquisition conditions. The impact on the resolution as a result of using a coverslip the thickness of which is mismatched with the one that the objective lens is designed for was shown and a novel technique was introduced in order to define the proper value on the correction collar of the lens. The amoimt of spherical aberration with regard to t he numerical aperture of the objective lens was investigated and it was shown that, based on the purpose of our imaging tasks, different numerical apertures must be used. The deformed beam cross section of the single-photon excitation source was corrected and the enhancement of the resolution and image quaUty was shown. Furthermore, the dependency of the scattered light on the excitation wavelength was shown empirically. In the second part, we continued the study of the image enhancement process by deconvolution techniques. Although deconvolution algorithms are used widely to improve the quality of the images, how well a deconvolution algorithm responds highly depends on the point spread function (PSF) of the imaging system applied to the algorithm and the level of its accuracy. We investigated approaches that can be done in order to obtain more precise PSF. Novel methods to improve the pattern of the PSF and reduce the noise are proposed. Furthermore, multiple soiu'ces to extract the PSFs of the imaging system are introduced and the empirical deconvolution results by using each of these PSFs are compared together. The results confirm that a greater improvement attained by applying the in situ PSF during the deconvolution process.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and deterministic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel metaheuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS metaheuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.
Resumo:
The curse of dimensionality is a major problem in the fields of machine learning, data mining and knowledge discovery. Exhaustive search for the most optimal subset of relevant features from a high dimensional dataset is NP hard. Sub–optimal population based stochastic algorithms such as GP and GA are good choices for searching through large search spaces, and are usually more feasible than exhaustive and determinis- tic search algorithms. On the other hand, population based stochastic algorithms often suffer from premature convergence on mediocre sub–optimal solutions. The Age Layered Population Structure (ALPS) is a novel meta–heuristic for overcoming the problem of premature convergence in evolutionary algorithms, and for improving search in the fitness landscape. The ALPS paradigm uses an age–measure to control breeding and competition between individuals in the population. This thesis uses a modification of the ALPS GP strategy called Feature Selection ALPS (FSALPS) for feature subset selection and classification of varied supervised learning tasks. FSALPS uses a novel frequency count system to rank features in the GP population based on evolved feature frequencies. The ranked features are translated into probabilities, which are used to control evolutionary processes such as terminal–symbol selection for the construction of GP trees/sub-trees. The FSALPS meta–heuristic continuously refines the feature subset selection process whiles simultaneously evolving efficient classifiers through a non–converging evolutionary process that favors selection of features with high discrimination of class labels. We investigated and compared the performance of canonical GP, ALPS and FSALPS on high–dimensional benchmark classification datasets, including a hyperspectral image. Using Tukey’s HSD ANOVA test at a 95% confidence interval, ALPS and FSALPS dominated canonical GP in evolving smaller but efficient trees with less bloat expressions. FSALPS significantly outperformed canonical GP and ALPS and some reported feature selection strategies in related literature on dimensionality reduction.