1 resultado para Classical orthogonal polynomials
em Brock University, Canada
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Acceda, el repositorio institucional de la Universidad de Las Palmas de Gran Canaria. España (5)
- AMS Tesi di Dottorato - Alm@DL - Università di Bologna (7)
- AMS Tesi di Laurea - Alm@DL - Università di Bologna (2)
- ArchiMeD - Elektronische Publikationen der Universität Mainz - Alemanha (4)
- Archive of European Integration (5)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (11)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (17)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (1)
- Biodiversity Heritage Library, United States (1)
- BORIS: Bern Open Repository and Information System - Berna - Suiça (55)
- Boston University Digital Common (1)
- Brock University, Canada (1)
- Bucknell University Digital Commons - Pensilvania - USA (6)
- Bulgarian Digital Mathematics Library at IMI-BAS (7)
- CaltechTHESIS (9)
- Cambridge University Engineering Department Publications Database (45)
- CentAUR: Central Archive University of Reading - UK (100)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (36)
- Cochin University of Science & Technology (CUSAT), India (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (2)
- CUNY Academic Works (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (1)
- Digital Commons - Michigan Tech (1)
- Digital Commons @ DU | University of Denver Research (3)
- Digital Peer Publishing (1)
- DigitalCommons@The Texas Medical Center (6)
- Digitale Sammlungen - Goethe-Universität Frankfurt am Main (2)
- Diposit Digital de la UB - Universidade de Barcelona (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- Duke University (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (7)
- Greenwich Academic Literature Archive - UK (2)
- Helda - Digital Repository of University of Helsinki (5)
- Indian Institute of Science - Bangalore - Índia (86)
- Instituto Politécnico de Bragança (1)
- Instituto Politécnico de Viseu (1)
- Instituto Politécnico do Porto, Portugal (3)
- Massachusetts Institute of Technology (2)
- Memoria Académica - FaHCE, UNLP - Argentina (14)
- Ministerio de Cultura, Spain (2)
- National Center for Biotechnology Information - NCBI (14)
- Publishing Network for Geoscientific & Environmental Data (15)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (93)
- Queensland University of Technology - ePrints Archive (28)
- Repositório digital da Fundação Getúlio Vargas - FGV (4)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (3)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (219)
- Research Open Access Repository of the University of East London. (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (2)
- SAPIENTIA - Universidade do Algarve - Portugal (1)
- Universidad de Alicante (8)
- Universidad del Rosario, Colombia (1)
- Universidad Politécnica de Madrid (31)
- Universidade Complutense de Madrid (3)
- Universidade Federal do Pará (3)
- Universidade Federal do Rio Grande do Norte (UFRN) (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (16)
- Université de Lausanne, Switzerland (2)
- Université de Montréal (1)
- Université de Montréal, Canada (14)
- University of Connecticut - USA (4)
- University of Michigan (21)
- University of Queensland eSpace - Australia (1)
- WestminsterResearch - UK (1)
Resumo:
Let f(x) be a complex rational function. In this work, we study conditions under which f(x) cannot be written as the composition of two rational functions which are not units under the operation of function composition. In this case, we say that f(x) is prime. We give sufficient conditions for complex rational functions to be prime in terms of their degrees and their critical values, and we derive some conditions for the case of complex polynomials. We consider also the divisibility of integral polynomials, and we present a generalization of a theorem of Nieto. We show that if f(x) and g(x) are integral polynomials such that the content of g divides the content of f and g(n) divides f(n) for an integer n whose absolute value is larger than a certain bound, then g(x) divides f(x) in Z[x]. In addition, given an integral polynomial f(x), we provide a method to determine if f is irreducible over Z, and if not, find one of its divisors in Z[x].