7 resultados para Chronic intermittent hypoxia
em Brock University, Canada
Resumo:
The role of the hospital-employed nurse educator is evolving. Factors influencing this change include the introduction of standards for nurse educators by the College of Nurses of Ontario (CNO), a change in the way nurses are educated, the emergence of nursing as a profession, and hospital restructuring as a result of budgetary constraints. Two of these influencing factors: the introduction of the updated Standards of Practice for Registered Nurses and Registered Practical Nurses (1996) and hospital restructuring occurred over the last 7 years at several hospitals in southern Ontario. Current literature as well as the Standards of Practice (1996) were utilized to examine the current roles and responsibilities of nurse educators and subsequently develop a questionnaire to study the impact of these influencing factors on the role of the nurse educator. This questionnaire was piloted and revised before its distribution at 4 hospitals in southern Ontario. Twenty-five of the 41 surveys (61%) distributed were returned for analysis. The data reflected that the Standards of Practice had a positive influence on the role of the nurse educator, while hospital restructuring had a negative impact. In addition, many of the roles and responsibilities identified in the literature were indeed part of the current role of nurse educators, as well as several responsibilities not captured in the literature. The predictions for the future of this role in its current state were not positive given the financial status of the health care system as well as the lack of clarity for the role and the current level ofjob satisfaction among practicing nurse educators. However, a list of recommendations were generated which, if implemented, could add clarity to the role and improve job satisfaction. This could enhance the retention of current nurse educators and the possibility of recruiting competent nurse educators to the role in the future.
Resumo:
Most metabolic functions are optimized within a narrow range of body temperatures, which is why thermoregulation is of great importance for the survival and overall fitness of an animal. It has been proposed that lizards will thermoregulate less precisely in low thermal quality environments, where the costs associated with thermoregulation are high; in the case of lizards, whose thermoregulation is mainly behavioural, the primary costs ofthermoregulation are those derived from locomotion. Decreasing thermoregulatory precision in costly situations is a strategy that enhances fitness by allowing lizards to be more flexible to changing environmental conditions. It allows animals to maximize the benefits of maintaining a relatively high body temperature while minimizing energy expenditure. In situations where oxygen concentration is low, the costs of thermoregulation are relatively high (i.e. in relation to the amount of oxygen available for metabolic functions). As a result, it is likely that exposures to hypoxic conditions induce a decrease in the precision of thermoregulation. This study evaluated the effects of hypoxia and low environmental thermal quality, two energetically costly conditions, on the precision and level of thermoregulation in the bearded dragon, Pogona vitticeps, in an electronic temperature-choice shuttle box. Four levels of hypoxia (1O, 7, 5 and 4% 02) were tested. Environmental thermal quality was manipulated by varying the rate of temperature change (oTa) in an electronic temperature-choice shuttle box. Higher oT a's translate into more thermally challenging environments, since under these conditions the animals are forced to move a greater number of times (and hence invest more energy in locomotion) to maintain similar temperatures than at lower oTa's. In addition, lizards were tested in an "extreme temperatures" treatment during which air temperatures of the hot and cold compartments of the shuttle box were maintained at a constant 50 and 15°C respectively. This was considered the most thermally challenging environment. The selected ambient (T a) and internal body temperatures (Tb) of bearded dragons, as well as the thermoregulatory precision (measured by the central 68% ofthe Ta and T b distribution) were evaluated. The thermoregulatory response was similar to both conditions. A significant increase in the size of the Tb range, reflecting a decrease in thermoregulatory precision, and a drop in preferred body temperature of ~2 °C, were observed at both 4% oxygen and at the environment of lowest thermal quality. The present study suggests that in energetically costly situations, such as the ones tested in this study, the bearded dragon reduces energy expenditure by decreasing preferred body temperature and minimizing locomotion, at the expense of precise behavioural thermoregulation. The close similarity of the behavioural thermoregulatory response to two very different stimuli suggests a possible common mechanism and neuronal pathway to the thermoregulatory response.
Resumo:
Mammalian heterotherms, such as hibemators, are known to be more tolerant of low oxygen tensions than their homeothermic counterparts. It has been suggested that this relative hypoxia tolerance is related to their ability to deal with dramatic changes in body temperature during entry to and arousal from torpor. However, hibemators demonstrate dramatic seasonality in both daily heterothermy and overall torpor expression. It was of interest to test if seasonal comparisons of normothermic individuals within a single species with the capacity to hibernate produce changes in the response to hypoxia that would reflect a seasonal change in tolerance to low oxygen. In particular, the species studied, the Eastern chipmunk {Tamias striatus), is known to enter into torpor exclusively in the winter. To test for seasonal differences in the metabolic and thermoregulatory responses to hypoxia, flow-through respirometry was used to compare metabolic rate, minimum thermal conductance, body temperature, and a thermal gradient used to assess selected ambient temperature in response to hypoxia in both summer and winter acclimated animals. Although the animals periodically expressed torpor throughout the winter, no differences between season in resting metabolic rate, body temperature or minimum thermal conductance were observed in normoxia. The metabolic trials indicated that chipmunks are less responsive to hypoxia in the winter than they are in the summer. Although body temperature dropped in response to hypoxia in both seasons, the decrease was less in the winter, and there was no corresponding decrease in metabolic rate. Providing the animals with a choice of ambient temperatures in hypoxia resulted in a blunting of the drop in body temperature in both seasons, suggesting that the reported fall in body temperature set point in hypoxia is not fully manifested in the behavioural pathways responsible for thermoregulation in chipmunks. Instead, body temperature in hypoxia appears to be highly dependent on ambient temperature and oxygen concentration. The results of this study suggest that the season in which the responses to hypoxia are measured is important, especially in a heterotherm where seasonality can affect the degree to 1 which the animal is tolerant of hypoxia. Winter-acclimated chipmunks appear more capable of defending metabolic heat production in hypoxia, a response consistent with the increased thermogenic capacity observed in animals that must periodically enter and arouse from torpor during hibernation.
Resumo:
Health education is essential to the successful treatment of individuals with chronic illnesses. Self-management is a philosophical model of health education that has been shown to be effective in teaching individuals with chronic arthritis to manage their illness as part of their daily lives. Despite the proven results of arthritis self-management programs, some limitations of this form of health education were apparent in the literature. The present study attempted to address the problems of the self-management approach of health education such as reasons for lack of participation in programs and poor course outcomes. In addition, the study served to investigate the relationship between course outcomes and participation in programs with the theory upon which arthritis self-management programs are based, known as self-efficacy theory. Through a combination of qualitative and quantitative methodologies, data collection, and analysis, a deeper understanding of the self-management phenomenon in the treatment of chronic arthritic conditions was established. Findings of the study confirm findings of previous studies that suggest that arthritis self-management programs result in enhanced levels of self-efficacy and are effective in teaching individuals with arthritis to self-manage their health and health care. Findings of the study suggest that there are many factors that determine the choice of participants to participate in programs and the outcomes for the individuals who do choose to participate in programs. Some of the major determinants of enrollment and outcomes of programs include: the participant's personality, beliefs, attitudes and abilities, and the degree of emotional acceptance of the illness. Other determinants of course enrollment and outcomes included class size and length of time, timing of participation, and ongoing support after the program. The results of the study are consistent with the self-management literature and confirm the relationship between the underlying philosophies of adult education and Freire's model of education and self-management.
Resumo:
Chronic low back pain (CLBP) is a complex health problem of psychological manifestations not fully understood. Using interpretive phenomenological analysis, 11 semi-structured interviews were conducted to help understand the meaning of the lived experience of CLBP; focusing on the psychological response to pain and the role of depression, catastrophizing, fear-avoidance behavior, anxiety and somatization. Participants characterized CLBP as persistent tolerable low back pain (TLBP) interrupted by periods of intolerable low back pain (ILBP). ILBP contributed to recurring bouts of helplessness, depression, frustration with the medical system and increased fear based on the perceived consequences of anticipated recurrences, all of which were mediated by the uncertainty of such pain. During times of TLBP all participants pursued a permanent pain consciousness as they felt susceptible to experience a recurrence. As CLBP progressed, participants felt they were living with a weakness, became isolated from those without CLBP and integrated pain into their self-concept.
Resumo:
Once thought to occur only during specific periods of development, it is now clear that neurogenesis occurs in the rat hippocampus into adulthood. It is wellestablished that stress during adulthood decreases the rate of neurogenesis, but during adolescence, the effects of stress are much less understood. I investigated the effect of short-term or chronic stress during adolescence (daily lhr isolation and change of cage partner from postnatal day (PND) 30-32 or 30-45) on hippocampal neurogenesis. In experiment 1, rats were administered Bromodeoxyuridine (BrdU) daily on PND 30-32, or 46-48, to mark neurogenesis at the beginning of the stressor or after the stressor had ceased, respectively. Neither short-term nor chronic stress had an effect on proliferation or survival (evidenced by BrdU and Doublecortin (Dcx) immunohistochemistry respectively) of cells born at the beginning of the stress procedure. Compared to controls, BrdU-labeling showed chronic stress significantly increased proliferation of cells generated after the stressor had ceased, but survival of new neurons was not supported (Dcx-Iabeling). However, it may be that BrdU injections are inherently stressful. In experiment 2, the stressor (described above) was applied in the absence of BrdU injections. Ki67 (a marker of proliferation) showed that stress transiently increased cell proliferation. Dcx-Iabeling showed that stress also increased neuron survival into adulthood. Labeling with OX.,.42 (a marker of macro phages) suggested that the immune system plays a role in neurogenesis, as stress transiently decreased the number of activated microglia in the hippocampus. It can be concluded that in the adolescent male rat, chronic mild stress increases neurogenesis.
Resumo:
A double-blinded, placebo controlled, cross-over design was used to investigate sodium citrate dihydrate (Na-CIT) supplementation improve 200m swimming performance. Ten well-trained, male swimmers (14.9 ± 0.4y; 63.5 ± 4kg) performed four 200m time trials: acute (ACU) supplementation (0.5g/kg), acute placebo (PLC-A), chronic (CHR) (0.1g/kg for 3 days and 0.3g/kg on the 4th day pre-trial), and chronic placebo (PLC-C). Na-CIT was administered 120min pre-trial in solution with 500mL of flavored water; placebo was flavored water. Blood lactate, base excess (BE), bicarbonate, pH, and PCO2 were analyzed at basal, 100min post-ingestion, and 3min post-trial via finger prick. Time, lactate, and rate of perceived exertion were not different between trials. BE and bicarbonate were significantly higher for the ACU and CHR trials compared to placebo. “Responders” improved by 1.03% (P=0.043) and attained significantly higher post-trial lactate concentrations in the ACU versus PLC-A trials and compared to non-responders in the ACU and CHR trials.