4 resultados para Cholinergic

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adult rats emit 22 kHz ultrasonic alann calls in aversive situations. This type of call IS a component of defensive behaviour and it functions predominantly to warn conspecifics about predators. Production of these calls is dependent on the central cholinergic system. The laterodorsal tegmental nucleus (LDT) and pedunculopontine tegmental nucleus (PPT) contain largely cholinergic neurons, which create a continuous column in the brainstem. The LDT projects to structures in the forebrain, and it has been implicated in the initiation of 22 kHz alarm calls. It was hypothesized that release of acetylcholine from the ascending LDT terminals in mesencephalic and diencephalic areas initiates 22 kHz alarm vocalization. Therefore, the tegmental cholinergic neurons should be more active during emission of alarm calls. The aim of this study was to demonstrate increased activity of LDT cholinergic neurons during emission of 22 kHz calls induced by air puff stimuli. Immunohistochemical staining of the enzyme choline acetyltransferase identified cell bodies of cholinergic neurons, and c-Fos immunolabeling identified active cells. Double labeled cells were regarded as active cholinergic cells. There were significantly more (pcholinergic and non-cholinergic cells, which are selectively active in the LDT during emission of 22 kHz alarm calls.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Rats produce ultrasonic vocalizations that can be categorized into two types of ultrasonic calls based on their sonographic structure. One group contains 22-kHz ultrasonic vocalization (USVs), characterized by relatively constant (flat) frequency with peak frequency ranging from 19 to 28-kHz, and a call duration ranging between 100 – 3000 ms. These vocalization can be induced by cholinomimetic agents injected into the ascending mesolimbic cholinergic system that terminates in the anterior hypothalamic-preoptic area (AH-MPO) and lateral septum (LS). The other group of USVs contains 50-kHz USVs, characterized by high peak frequency, ranging from 39 to 90-kHz, short duration ranging from 10-90 ms, and varying frequency and complex sonographic morphology. These vocalizations can be induced by dopaminergic agents injected into the nucleus accumbens, the target area for the mesolimbic dopaminergic system. 22-kHz USVs are emitted in situations that are highly aversive, such as proximity of a predator or anticipation of a foot shock, while 50 kHz USVs are emitted in rewarding and appetitive situations, such as juvenile play behaviour or anticipation of rewarding electrical brain stimulation. The activities of these two mesolimbic systems were postulated to be antagonistic to each other. The current thesis is focused on the interaction of these systems indexed by emission of relevant USVs. It was hypothesized that emission of 22 kHz USVs will be antagonized by prior activation of the dopaminergic system while emission of 50 kHz will be antagonized by prior activation of the cholinergic system. It was found that injection of apomorphine into the shell of the nucleus accumbens significantly decreased the number of carbachol-induced 22 kHz USVs from both AH-MPO and LS. Injection of carbachol into the LS significantly decreased the number of apomorphine-induced 50 kHz USVs from the shell of the nucleus accumbens. The results of the study supported the main hypotheses that the mesolimbic dopaminergic and cholinergic systems function in antagonism to each other.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An ascending cholinergic projection, which originates in the laterodorsal tegmental nucleus (LDT), was implicated in the initiation of ultrasonic vocalization. The goal of this study was to histochemically examine the activity the LDT following ultrasonic calls induced by two methods. It was hypothesized that cholinergic LDT cells would be more active during air puffinduced vocalization than carbachol-induced one. Choline acetyltransferase (ChAT), and cFos protein were visualized histochemically as markers of cholinergic calls and cellular activity, respectively. Results indicated that animals vocalizing after carbachol, but not after air puff, had a significantly higher number of Fos labeled nuclei within the LDT than non vocalizing controls. A significantly higher number of doublelabeled neurons were discovered in the LDT of vocalizing animals (in both groups) as compared to control conditions. Thus, there were significantly more active cholinergic cells in the LDT of vocalizing than non-vocalizing rats for both methods of call induction.