3 resultados para Cholesterol oxides
em Brock University, Canada
Resumo:
The reaction of tris(pentafluorophenyl)phosphine [5] with the nucleophiles dimethyl formamide (DMF), hexamethylphosphoric triamide (HMPA), diethyl formamide (DEF), hexaethylphosphoric triamide (HEPA), hydrazine, N,N-dimethyl hydrazine (in presence and/or absence of KF), phenylhydrazine, ammonium hydroxide, formamide, aniline, sodium hydrogen sulfide, and hexaethylphosphorous triamide was investigated. The reaction of [5] with DMF and HMPA gave the same product, namely tris-[4-(N,N-dimethylamino)-2,3,5,6-tetrafluorophenyl]phosphine [12] but in higher yield in the case of HMPA. Compound (5] also reacted with DEF to give tris[4-(N,N-diethylamino)-2,3,5,6-tetrafluorophenyl] phosphine [14]. When [51 was treated with HEPA, it gave a mixture of bis(pentafluorophe~yl)-(N,N-diethylamino-tetrafluorophenyl)phosphine, pentafluorophenyl-bis-(N,N-diethylamino-tetrafluorophenyl)phosphine and tris (N,N-diethylamino-tetrafluorophenyl)phosphine. Treatment of [5] with aqueeus hydrazine solution in excess ethanol gave tris(4-hydrazo-2,3,4,6-tetrafluorophenyl)phosphine [1s1 in high yield while reaction with aqueous hydrazine led to C-P cleavage and production of tetrafluorophenyl hydrazine. With N,N-dimethyl hydrazine, [5] gave tris(4-N,N-dimethylhydrazine-2,3,5,6-tetrafluorophenyl) phosphine {20j. The latter could be obtained in higher yield and shorter reaction time, by the addition of KF. The reaction of compound {51 with phenylhydrazine in THF gave bis(pentafluorophe~yl)-4-S-phenylhydrazino- 2,3,5,6-tetrafluorophenyl phosphine [22] in low yield. Reaction of [5] with ammonium hydroxide in THF at high pressure in the presence of KF gave tris-~4-amino-2,3,5,6-tetrafluorophenyl)phosphine [25]. Similarly, formamide led to a mixture of (C6F4NHZ)3P, (C6F4NHZ)ZPC6FS, (C6F4NHZ)ZPC6F4NHCHO, and C6F4NHZP(C6Fs)(C6F4NHCHO). When [5] was treated with aniline, a mixture of mono-, di-, and tri-substituted products was obtained. Sodium hydrogen sulfide in ethylene glycol/ pyridine led to C-P cleavage and the isolation of pentafluorobenzene and tetrafluorothiophenol. Reaction of [5] and its oxide [35] with different alkoxides in the corresponding alcohols led mainly to C-P bond cleavage products, with the exception of one case where sodium methoxide was used in ether, and which led to tris-(4-methoxy-2,3,9,6-tetrafluorophenyl)phosphine [37]. On the basis of various spectroscopic data, it was concluded that the para position in compound [5] was generally the favoured site of attack.
Resumo:
BACKGROUND: Dyslipidemia is recognized as a major cause of coronary heart disease (CHD). Emerged evidence suggests that the combination of triglycerides (TG) and waist circumference can be used to predict the risk of CHD. However, considering the known limitations of TG, non-high-density lipoprotein (non-HDL = Total cholesterol - HDL cholesterol) cholesterol and waist circumference model may be a better predictor of CHD. PURPOSE: The Framingham Offspring Study data were used to determine if combined non-HDL cholesterol and waist circumference is equivalent to or better than TG and waist circumference (hypertriglyceridemic waist phenotype) in predicting risk of CHD. METHODS: A total of3,196 individuals from Framingham Offspring Study, aged ~ 40 years old, who fasted overnight for ~ 9 hours, and had no missing information on nonHDL cholesterol, TG levels, and waist circumference measurements, were included in the analysis. Receiver Operator Characteristic Curve (ROC) Area Under the Curve (AUC) was used to compare the predictive ability of non-HDL cholesterol and waist circumference and TG and waist circumference. Cox proportional-hazards models were used to examine the association between the joint distributions of non-HDL cholesterol, waist circumference, and non-fatal CHD; TG, waist circumference, and non-fatal CHD; and the joint distribution of non-HDL cholesterol and TG by waist circumference strata, after adjusting for age, gender, smoking, alcohol consumption, diabetes, and hypertension status. RESULTS: The ROC AUC associated with non-HDL cholesterol and waist circumference and TG and waist circumference are 0.6428 (CI: 0.6183, 0.6673) and 0.6299 (CI: 0.6049, 0.6548) respectively. The difference in the ROC AVC is 1.29%. The p-value testing if the difference in the ROC AVCs between the two models is zero is 0.10. There was a strong positive association between non-HDL cholesterol and the risk for non-fatal CHD within each TO levels than that for TO levels within each level of nonHDL cholesterol, especially in individuals with high waist circumference status. CONCLUSION: The results suggest that the model including non-HDL cholesterol and waist circumference may be superior at predicting CHD compared to the model including TO and waist circumference.
Resumo:
The cholesterol chelating agent, methyl-b-cyclodextrin (MbCD), alters synaptic function in many systems. At crayfish neuromuscular junctions, MbCD is reported to reduce excitatory junctional potentials (EJPs) by impairing impulse propagation to synaptic terminals, and to have no postsynaptic effects. We examined the degree to which physiological effects of MbCD correlate with its ability to reduce cholesterol, and used thermal acclimatization as an alternative method to modify cholesterol levels. MbCD impaired impulse propagation and decreased EJP amplitude by 40% (P,0.05) in preparations from crayfish acclimatized to 14uC but not from those acclimatized to 21uC. The reduction in EJP amplitude in the cold-acclimatized group was associated with a 49% reduction in quantal content (P,0.05). MbCD had no effect on input resistance in muscle fibers but decreased sensitivity to the neurotransmitter L-glutamate in both warm- and coldacclimatized groups. This effect was less pronounced and reversible in the warm-acclimatized group (90% reduction in cold, P,0.05; 50% reduction in warm, P,0.05). MbCD reduced cholesterol in isolated nerve and muscle from cold- and warmacclimatized groups by comparable amounts (nerve: 29% cold, 25% warm; muscle: 20% cold, 18% warm; P,0.05). This effect was reversed by cholesterol loading, but only in the warm-acclimatized group. Thus, effects of MbCD on glutamatesensitivity correlated with its ability to reduce cholesterol, but effects on impulse propagation and resulting EJP amplitude did not. Our results indicate that MbCD can affect both presynaptic and postsynaptic properties, and that some effects of MbCD are unrelated to cholesterol chelation.