10 resultados para Chardonnay (vinífera branca)

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximum amount of ethyl carbamate (EC), a known animal carcinogen produced by the reaction of urea and ethanol, allowed in alcoholic beverages is regulated by legislation in many countries. Wine yeast produce urea by the metabolism of arginine, the predominant assimilable amino acid in must. This action is due to arginase (encoded by CARl). Regulation of CARl, and other genes in this pathway, is often attributed to a well-documented phenomenon known as nitrogen catabolite repression. The effect of the timing of di-ammonium phosphate (DAP) additions on the nitrogen utilization, regulation of CARl, and EC production was investigated. A correlation was found between the timing of DAP addition and the utilization of nitrogen. When DAP was added earlier in the fermentations, less amino nitrogen and more ammonia nitrogen was sequestered from the media by the cells. It was also seen that early DAP addition led to more total nitrogen being used, with a maximal difference of ~25% between fermentations where no DAP was added versus addition at the start of the fermentation. The effect of the timing ofDAP addition on the expression of CARJ during fermentation was analyzed via northern transfer and the relative levels of CARl expression were determined. The trends in expression can be correlated to the nitrogen data and be used to partially explain differences in EC formation between the treatments. EC was quantified at the end of fermentation by GC/MS. In Montrachet yeast, a significant positive correlation was found between the timing of DAP addition, from early to late, and the final EC concentration m the wine (r = 0.9226). In one of the fermentations, EC levels of 30.5 ppb was foimd when DAP was added at the onset of fermentation. A twofold increase (69.5 ppb) was observed when DAP was added after 75% of the sugars were metabolized. When no DAP was added, the ethyl carbamate levels are comparable at a value of 38 ppb. In contrast, the timing of DAP additions do not affect the level EC produced by the yeast ECU 18 in this manner. The study of additional yeast strains shows that the effect of DAP addition to fermentations is strain dependent. Our results reveal the potential importance of the timing of DAP addition to grape must with respect to EC production, and the regulatory effect of DAP additions on the expression of genes in the pathway for arginine metabolism in certain wine yeast strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of viticultural and oenological treatments on fruit and wine composition of Chardonnay musque Study I: Effect ofveraison leafremoval and cluster thinning A one-year study was performed analysing die effects of leaf removal, cluster thinning, yeast strain selection, and enzyme usage on the chemical composition and sensory properties of Chardonnay musque wine. A number of substantial differences were found between treatments in °Brix, TA, pH, and in free and potentially volatile terpene concentrations. Greatest variations in sensory attributes were created however through use of different viticultural practices.Study II: Effect ofcluster thinning timing A two year study was conducted investigating the effect of cluster thinning timing, yeast strain selection, and enzyme usage on the chemical composition and sensory attributes of Chardonnay musque wine. Time of thinning was found to impact °BrLx, titratable acidit}% pH, and free and potentially volatile terpene concentrations, as well as, a number of yield parameters.Yeast strain selection and enzyme usage also impacted wine composition, andwas found to exhibit a greater effect on sensory properties than application of cluster thinning.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An article published by the Wine Advisory Board in California, that discusses the history, culture and process of making Chardonnay.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A study was devised to evaluate influences of irrigation and fertigation practices on Vitis vinifera and Vitis labruscana grapes in the Niagara Peninsula. A modified FAO Penman- Monteith evapotranspiration formula was used to calculate water budgets and schedule irrigations. Five deficit irrigation treatments (non-irrigated control; deficits imposed postbloom, lag phase, and veraison; fiiU season irrigation) were employed in a Chardonnay vineyard. Transpiration rate (4-7 /xg H20/cmVs) and soil moisture data demonstrated that the control and early deficit treatments were under water stress throughout the season. The fiiU season irrigation treatment showed an 18% (2001) and 19% (2002) increase in yield over control due to increased berry weight. Soluble solids and wine quality were not compromised, and the fiiU season treatment showed similar or higher °Brix than all other treatments. Berry titratable acidity andpH also fell within acceptable levels for all five treatments. Irrigation/fertigation timing trials were conducted on Concord and Niagara vines in 2001- 02. The six Concord treatments consisted of a non-irrigated control, irrigation fi^om Eichhom and Lorenz (EL) stage 12 to harvest, and four fertigation treatments which applied 70 kg/ha urea. The nine Niagara treatments included a non-irrigated control, two irrigated treatments (ceasing at veraison and harvest, respectively) and six fertigation treatments of various durations. Slight yield increases (ca. 10% in Concord; 29% in Niagara) were accompanied by small decreases in soluble solids (1.5°Brix), and methyl anthranilate concentrations. Transpiration rate and soil moisture (1 1.9-16.3%) data suggested that severe water stress was present in these Toledo clay based vineyards.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Niagara Peninsula of Ontario is the largest viticultural area in Canada. Although it is considered to be a cool and wet region, in the last decade many water stress events occurred during the growing seasons with negative effects on grape and wine quality. This study was initiated to understand and develop the best strategies for water management in vineyards and those that might contribute to grape maturity advancement. The irrigation trials investigated the impact of time of initiation (fruit set, lag phase and veraison), water replacement level based on theoretical loss through crop evapotranspiration (ETc; 100,50 and 25%) and different irrigation strategies [partial root zone drying (PRD) versus regulated deficit irrigation (RD!)] on grape composition and wine sensory profiles. The irrigation experiments were conducted in a commercial vineyard (Lambert Vineyards Inc.) located in Niagara-on-the-Lake, Ontario, from 2005 through 2009. The two experiments that tested the combination of different water regimes and irrigation time initiation were set up in a randomized block design as follows: Baco noir - three replicates x 10 treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set, lag phase and veraison) + control]; Chardonnay - three replicates x seven treatments [(25%, 50% and 100% of ETc) x (initiation at fruit set and veraison) + control]. The experiments that tested different irrigation strategies were set up on two cultivars as follows: Sauvignon blanc - four replicates x four treatments [control, fully irrigated (100% ETc), PRD (100% ETc) and RDI (25% ETc)]; Cabemet Sauvignon - four replicates x five treatments [control, fully irrigated (100% ETc), PRD (100% ETc), RDI (50% ETc) and RDI (25% ETc)]. The controls in each experiment were nonirrigated. The irrigation treatments were compared for many variables related to soil water status, vine physiology, berry composition, wine sensory profile, and hormone composition [(abscisic acid (ABA) and its catabolites]. Soil moisture profile was mostly affected by irrigation treatments between 20 and 60 em depth depending on the grapevine cultivar and the regime of water applied. Overall soil moisture was consistently higher throughout the season in 100 and 50% ETc compare to the control. Transpiration rates and leaf temperature as well as shoot growth rate were the most sensitive variables to soil water status. Drip irrigation associated with RDI treatments (50% ETc and 25% ETc) had the most beneficial effects on vine physiology, fruit composition and wine varietal typicity, mainly by maintaining a balance between vegetative and reproductive parts of the vine. Neither the control nor the 100 ETc had overall a positive effect on grape composition and wine sensory typicity. The time of irrigation initiation affected the vine physiology and grape quality, the most positive effect was found in treatments initiated at lag phase and veraison. RDI treatments were overall more consistent in their positive effect on grape composition and wine varietal typicity comparing to PRD treatment. The greatest difference between non-irrigated and irrigated vines in most of the variables studied was found in 2007, the driest and hottest season of the experimental period. Soil water status had a greater and more consistent effect on red grapevine cultivars rather than on white winegrape cultivars. To understand the relationships among soil and plant water status, plant physiology and the hormonal profiles associated with it, abscisic acid (ABA) and its catabolites [phaseic acid (PA), dihydrophaseic acid (DPA), 7-hydroxy-ABA (TOH-ABA), 8' -hydroxy-ABA, neophaseic acid and abscisic acid glucose ester (ABA-GE)] were analyzed in leaves and berries from the Baco noir and Chardonnay irrigation trials over two growing seasons. ABA and some of its catabolites accurately described the water status in the vines. Endogenous ABA and some of its catabolites were strongly affected in Baco noir and Chardonnay by both the water regime (i.e. ET level) and timing of irrigation initiation. Chardonnay grapevines produced less ABA in both leaves and berries compared to Baco noir, which indicated that ABA synthesis is also cultivar dependant. ABA-GE was the main catabolite in treatments with high water deficits, while PA and DPA were higher in treatments with high water status, suggesting that the vine produced more ABA-GE under water deficits to maintain rapid control of the stomata. These differences between irrigation treatments with respect to ABA and catabolites were particularly noticeable in the dry 2007 season. Two trials using exogenous ABA investigated the effect of different concentrations of ABA and organs targeted for spraying, on grape maturation and berry composition of Cabemet Sauvignon grapevines, in two cool and wet seasons (2008-2009). The fIrst experiment consisted of three replicates x three treatments [(150 and 300 mg/L, both applications only on clusters) + untreated control] while the second experiment consisted in three replicates x four treatments [(full canopy, only clusters, and only leaves sprayed with 300 ppm ABA) + untreated control]. Exogenous ABA was effective in hastening veraison, and improving the composition of Cabemet Sauvignon. Ability of ABA to control the timing of grape berry maturation was dependant on both solution concentration and the target organ. ABA affected not only fruit composition but also yield components. Berries treated with ABA had lower weight and higher skin dry mass, which constitutes qualitative aspects desired in the wine grapes. Temporal advancement of ripening through hormonal control can lead to earlier fruit maturation, which is a distinct advantage in cooler areas or areas with a high risk of early frost occurrence. Exogenous ABA could provide considerable benefits to wine industry in terms of grape composition, wine style and schedule activities in the winery, particularly in wet and cool years. These trials provide the ftrst comprehensive data in eastern North America on the response of important hybrid and Vitis vinifera winegrape cultivars to irrigation management. Results from this study additionally might be a forward step in understanding the ABA metabolism, and its relationship with water status. Future research should be focused on ftnding the ABA threshold required to trigger the ripening process, and how this process could be controlled in cool climates.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Vineyards vary over space and time, making geomatics technologies ideally suited to study terroir. This study applied geomatics technologies - GPS, remote sensing and GIS - to characterize the spatial variability at Stratus Vineyards in the Niagara Region. The concept of spatial terroir was used to visualize, monitor and analyze the spatial and temporal variability of variables that influence grape quality. Spatial interpolation and spatial autocorrelation were used to measure the pattern demonstrated by soil moisture, leaf water potential, vine vigour, soil composition and grape composition on two Cabernet Franc blocks and one Chardonnay block. All variables demonstrated some spatial variability within and between the vineyard block and over time. Soil moisture exhibited the most significant spatial clustering and was temporally stable. Geomatics technologies provided valuable spatial information related to the natural spatial variability at Stratus Vineyards and can be used to inform and influence vineyard management decisions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Multicoloured Asian Lady Beetles (MALB) and 7-spot Lady Beetles that infect vineyards can secrete alkyl-methoxypyrazines when they are processed with the grapes, resulting in wines containing a taint. The main methoxypyrazine associated with this taint is 3-isopropyl-2-methoxypyrazine (IPMP). The wines are described as having aroma and flavours of peanut butter, peanut shells, asparagus and earthy which collectively, have become known as “ladybug taint”. To date, there are no known fining agents used commercially added to juice or wine that are effective in removing this taint. The goal of this project was to use previously identified proteins with an ability to bind to methoxypyrazines at low pH, and subsequently develop a binding assay to test the ability of these proteins to bind to and remove methoxypyrazines from grape juice. The piglet odorant binding protein (plOBP) and mouse major urinary protein (mMUP) were identified, cloned and expressed in the Pichia pastoris expression system. Protein expression was induced using methanol and the proteins were subsequently purified from the induction media using anion exchange chromatography. The purified proteins were freeze-dried and rehydrated prior to use in the methoxypyrazine removal assay. The expression and purification system resulted in yields of approximately 78% of purified plOBP and 62% of purified mMUP from expression to rehydration. Purified protein values were 87 mg of purified plOPB per litre of induction media and 19 mg of purified mMUP per litre of induction medium. In order to test the ability of the protein to bind to the MPs, an MP removal assay was developed. In the assay, the purified protein is incubated with either IPMP or 3-isobutyl-2-methoxypyrazine (IBMP) for two hours in either buffer or grape juice. Bentonite is then used to capture the protein-MP complex and the bentonite-protein-MP complex is then removed from solution by filtration. Residual MP is measured in solution following the MP removal assay and compared to that in the starting solution by Gas Chromatography Mass Spectrometry (GC/MS). GC/MS results indicated that the mMUP was capable of removing IBMP and IPMP from 300 ng/L in buffer pH 4.0, buffer pH 3.5 and Riesling Juice pH 3.5 down to the limit of quantification of the instrument, which is 6ng/L and 2ng/L for IBMP and IPMP, respectively. The results for the plOBP showed that although it could remove some IBMP, it was only approximately 50-70 ng/L more than bentonite treatment followed by filtration, resulting in approximately 100 ng/L of the MPs being left in solution. pIOBP was not able to remove IPMP in buffer pH 3.5 using this system above that removed by bentonite alone. As well, the pIOBP was not able to remove any additional MPs from Chardonnay juice pH 3.5 above that already removed by the bentonite and filtration alone. The mouse MUP was shown to be a better candidate protein for removal of MPs from juice using this system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Inniskillin Wines was founded by Karl Kaiser and Donald Ziraldo in 1975 in Niagara-on-the-Lake, Ontario. They had met the previous year, when Karl Kaiser, a winemaker and chemist, purchased some grapes from Donald Ziraldo, who owned and operated Ziraldo Nurseries. The two shared a vision of producing better quality Canadian wines and formed a partnership, with Kaiser making the wine and Ziraldo serving as company President. In 1975, they were granted a winery license by the LCBO, the first one granted since 1929. The company name Inniskillin was derived from the Inniskilling Fusilliers, an Irish regiment whose Colonel once owned the land that Ziraldo Nurseries occupied. This was the original site of the winery, although in 1978 the winery moved to the Brae Burn Estate, their current location. In 1982 the winery expanded by 50 acres with the addition of the Montague Vineyard, and another 50 acres was acquired in 1991. The Niagara-on-the-Lake vineyard produces single vineyards bottlings of Chardonnay, Pinot Noir, Merlot and Pinot Grigio/Pinot Gris. In 1984, Karl Kaiser began producing icewine from Vidal grapes frozen naturally on the vine. Inniskillin garnered international acclaim for the quality of their icewines, receiving the prestigious Grand Prix d’Honneur at VinExpo in 1991, for their 1989 Vidal icewine. This established Inniskillin as a producer of world class wines, while also raising the profile of Canadian wines in general. The company branched out their operations, first acquiring vineyards in the Napa Valley in 1989 to form Inniskillin Napa (producing wines under the Terra label), and in 1994 establishing Inniskillin Okanagan in the Okanagan Valley in British Columbia. The Napa valley venture ceased in the mid 90’s, while Inniskillin Okanagan continues to operate. In 2006, Karl Kaiser and Donald Ziraldo left Inniskillin. Kaiser retired, while Ziraldo became chair of the Vineland Research and Innovation Center (2006-2011), and remains involved in the wine industry. In 2007, Bruce Nicholson joined Inniskillin as winemaker. Nicholson continues to produce award-winning wines under the Inniskillin label, receiving the top award, the Premio Speciale Gran Award, at Vinitaly 2009 for his 2006 Gold Vidal and his 2006 Sparkling Vidal Icewine. In 2012, he received several awards for the 2008 Riesling Icewine, including gold at the International Wine and Spirits Competition in London, UK, the San Francisco International Wine Championships, and Selections Mondials des Vins Canada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A menu from the airline KLM World Business Class, featuring the wine of Inniskillin, specifically the Chardonnay Reserve 1994.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A media release announcing Air Canada's use of "Inniskillin's 1978 Chardonnay on all first class domestic flights". The announcement describes the process of making the wine and the flavour. Also included is a 1978 Chardonnay label.