1 resultado para Catalyst deactivation
em Brock University, Canada
Resumo:
The present thesis outlines the preparation of a 7-membered guanidine. Initial efforts to obtain this guanidine via 2-chloro-1,3-dimethylimidazolinium chloride induced ring forming chemistry failed to provide the target in a reproducible fashion. Changing strategies, we were able to obtain the desired guanidine through CuCl mediated amination of a 7-membered thiourea intermediate to arrive at the target. In addition, the catalytic activity of this compound was evaluated in a vinylogous aldol reaction of dibromofuranone and four aromatic aldehydes to generate chiral γ-butenolides with modest to good enantiomeric excess. It was found that electron-poor aldehydes resulted in higher, 81% ee, whereas electron rich aldehydes led to low, 41% ee, levels of enantiomeric excess.