1 resultado para Camarones-Cría-Sonora
em Brock University, Canada
Resumo:
PreVi011.3 ':i or~ : indicat e('. tk~t ho t~)rE's sed ~-Al B 12 1i~2, ~' a semiconductor. r:Toreove r , the s i mpl.(~ electronic t heory also indi cates that ~ -AIB1 2 should be a semico nductor, since thf're is one nonbonding e 'Le ctrofl per AlB12- uni t. JPor these reasons, we decided to measure t he electrical n ropert i ~ s of ~ -AlB1 2 single crystal s . Singl e crystal s of¥- AIB 12 ab ou t 1 x 1 r1n1 . size were grown from a copper mel t at 12500 C. The melt technique coupled. 1,vi th slow cooling vilas used because of i ts advantages such as : siTYInle set- up of the expe rimon t ; only e ;l.sil y available c hemi cals are required and it i s a c omparatively strair::bt forvvard y,le t hod still yielding crystal s big enouGh for OtU' purpose . Copper rms used as a solvent , i nst8ad of previOl.wly used aluminum , because it allows c.l.'ystal growth at hig he r t emneratures. HovlGver, the cry s tals of ] -AlB12 shm'red very hi gh res i s t ance a t r oom temperature . From our neasureJ'lents we conclude that the r esistivity of j3- Al B12 is, at least, given as ~ = 4. x 107 oblD .em •• Those results are inc ons i s t ent wi 'uh the ones .. reported by IIiss Khin fo r bot- pressed j3-AlB12 g i ven a s = 7600 ohm . em . or I e s s . ' Since tbe hot pressing was done at about 800 - ' 9000C i n ~ rap hi te moul ds 1,7i th 97% AlB12- p oVJder, vie thi nk there is pas s ib i 1 i ty th a.t lower borides or borot] carbide are , being formed, ':.Jhich are k11 own to be good semiconductors . v7e tried to ro-pe r-AlB12 by addi'J,'?: agents s uch as l:Ig , IG.-InO 4. ' HgS04 , KI12PO 4·' etc. to t he melt .. However , all these re age 11 t eel either reduced the yield and size of t lJe crystals or r;ave crystals of high r esis'can ce again. We think tba t molten copper keeps t he i mpurities off . There is also a pos s i bil i ty t hc:!,t these doping agents get oxidi~::;ed at '1 250°C • Hence, we co ~ clud e that J -AIB12 has v~ ry high r es i stance at r oom temperature . This was a l s o C011 - fi rmed by checki ng the siYlgle and. polycrystals of .~-AIB12 from Norton Co., Ontario and Cooper Nletallurgical Association. Boron carbide has been reported to be a semiconductor with ~ - 0.3 to 0.8 ohm . cm. for hotpres sed s araples. Boron carbide b e inq: struct urally related to ¥-AIB12 , we de cided to study the electrical prone rties of it~ Single crystals. These crystals were cut from a Single melt grovvn crystal a t Norton Co., Ontario. The resistivity of th," se crystal s was measured by the Van der Pam-v' s ~ nethod, which \vas very c onvenient fo r our crystal sha-pp.s. Some of the crystals showed resistivity ~ == 0.50 ob,Tn.cr] . i n agreement with the previously reported results . However , a few crystals showed lower resistivity e.g . 0 .13 and 0.20 ohm.cra • • The Hall mobility could .not be measured and th8reiore i s lower than 0 .16 em 2 v - 1 sec -1 • This is in agreement \vith t he re1)orted Hall mobility for pyrolytic boron . _ 2 -1 -1 carbide as 0.13 cm v sec • We also studied the orientation of the boron carbide crystals by the Jjaue-method. The inclination of c-axis with res pect to x-ray be81Il was det ermined . This was found to be 100 t o 20° f or normal resistivity sarnples (0.5 ohm . cm.) and 27 - 30° for t he lower r esistivity samples (0.1 ~5 to 0.20 ohm.cm .). This indica tes the possibility that th.e r es if.1tivity of B13C3 i s orientation dependent.