9 resultados para Call Graph
em Brock University, Canada
Resumo:
The hyper-star interconnection network was proposed in 2002 to overcome the drawbacks of the hypercube and its variations concerning the network cost, which is defined by the product of the degree and the diameter. Some properties of the graph such as connectivity, symmetry properties, embedding properties have been studied by other researchers, routing and broadcasting algorithms have also been designed. This thesis studies the hyper-star graph from both the topological and algorithmic point of view. For the topological properties, we try to establish relationships between hyper-star graphs with other known graphs. We also give a formal equation for the surface area of the graph. Another topological property we are interested in is the Hamiltonicity problem of this graph. For the algorithms, we design an all-port broadcasting algorithm and a single-port neighbourhood broadcasting algorithm for the regular form of the hyper-star graphs. These algorithms are both optimal time-wise. Furthermore, we prove that the folded hyper-star, a variation of the hyper-star, to be maixmally fault-tolerant.
Resumo:
Call centres have emerged during a time of rapid technological change and represent a form of ready employment for those seeking to replace or supplement "traditional" forms of employment. Call centre work is considered characteristic of the kinds of service work available in the new economy. This paper examines the experiences and practices of lower level managers in a call centre in southern Ontario. Findings are based on analysis of semi-structured interviews. The findings suggest that lower level managers resolve the contradictory social space they occupy by aligning themselves primarily with more powerful executives, in part because they know this might lead to increased job security. The implications of this trend for building a strong labour movement capable of combating neoliberal discourses regarding the need for work restructuring are discussed.
Resumo:
Complex networks can arise naturally and spontaneously from all things that act as a part of a larger system. From the patterns of socialization between people to the way biological systems organize themselves, complex networks are ubiquitous, but are currently poorly understood. A number of algorithms, designed by humans, have been proposed to describe the organizational behaviour of real-world networks. Consequently, breakthroughs in genetics, medicine, epidemiology, neuroscience, telecommunications and the social sciences have recently resulted. The algorithms, called graph models, represent significant human effort. Deriving accurate graph models is non-trivial, time-intensive, challenging and may only yield useful results for very specific phenomena. An automated approach can greatly reduce the human effort required and if effective, provide a valuable tool for understanding the large decentralized systems of interrelated things around us. To the best of the author's knowledge this thesis proposes the first method for the automatic inference of graph models for complex networks with varied properties, with and without community structure. Furthermore, to the best of the author's knowledge it is the first application of genetic programming for the automatic inference of graph models. The system and methodology was tested against benchmark data, and was shown to be capable of reproducing close approximations to well-known algorithms designed by humans. Furthermore, when used to infer a model for real biological data the resulting model was more representative than models currently used in the literature.
Resumo:
The way in which individuals seek romantic partners has changed considerably in the past decades, most notably through online dating sites (ODSs). Despite the possibility of misrepresentation amongst client users, such sites continue to grow in popularity because ODSs provide a large pool from which individuals can select and attract potential partners. While much research has been undertaken on ODSs, little empirical research has examined postsecondary students’ use of ODSs. Therefore, this study sought to investigate why postsecondary students have become involved with and how they present themselves on ODSs. The researcher surveyed 20 postsecondary students and conducted in-depth interviews with 2 participants who use ODSs. Although the limited sample prevented results from being generalized, quantitative and qualitative analyses suggest that participants became involved with ODSs for various purposes, such as seeking long-term relationships and/or marriage partners, or simply exploring or visiting ODSs out of curiosity. Findings indicate that ODS users’ physical appearance and/or “attractiveness” is considered the strongest predictor of relationship success. The study discusses how participants’ self-presentation affects outcomes of ODS usage, particularly when negative self-identification and presentation corresponding to factors such as individuals’ weight and age are taken into account.
Resumo:
A complex network is an abstract representation of an intricate system of interrelated elements where the patterns of connection hold significant meaning. One particular complex network is a social network whereby the vertices represent people and edges denote their daily interactions. Understanding social network dynamics can be vital to the mitigation of disease spread as these networks model the interactions, and thus avenues of spread, between individuals. To better understand complex networks, algorithms which generate graphs exhibiting observed properties of real-world networks, known as graph models, are often constructed. While various efforts to aid with the construction of graph models have been proposed using statistical and probabilistic methods, genetic programming (GP) has only recently been considered. However, determining that a graph model of a complex network accurately describes the target network(s) is not a trivial task as the graph models are often stochastic in nature and the notion of similarity is dependent upon the expected behavior of the network. This thesis examines a number of well-known network properties to determine which measures best allowed networks generated by different graph models, and thus the models themselves, to be distinguished. A proposed meta-analysis procedure was used to demonstrate how these network measures interact when used together as classifiers to determine network, and thus model, (dis)similarity. The analytical results form the basis of the fitness evaluation for a GP system used to automatically construct graph models for complex networks. The GP-based automatic inference system was used to reproduce existing, well-known graph models as well as a real-world network. Results indicated that the automatically inferred models exemplified functional similarity when compared to their respective target networks. This approach also showed promise when used to infer a model for a mammalian brain network.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
In children, levels of play, physical activity, and fitness are key indicators of health and disease and closely tied to optimal growth and development. Cardiopulmonary exercise testing (CPET) provides clinicians with biomarkers of disease and effectiveness of therapy, and researchers with novel insights into fundamental biological mechanisms reflecting an integrated physiological response that is hidden when the child is at rest. Yet the growth of clinical trials utilizing CPET in pediatrics remains stunted despite the current emphasis on preventative medicine and the growing recognition that therapies used in children should be clinically tested in children. There exists a translational gap between basic discovery and clinical application in this essential component of child health. To address this gap, the NIH provided funding through the Clinical and Translational Science Award (CTSA) program to convene a panel of experts. This report summarizes our major findings and outlines next steps necessary to enhance child health exercise medicine translational research. We present specific plans to bolster data interoperability, improve child health CPET reference values, stimulate formal training in exercise medicine for child health care professionals, and outline innovative approaches through which exercise medicine can become more accessible and advance therapeutics across the child health spectrum.
Resumo:
Roll call for fires and alarms for Citizens’ Hose Company No. 1. (1 double sided printed page). H.K. Woodruff is listed as a member, 1883.