2 resultados para Calculus, Operational.
em Brock University, Canada
Resumo:
Qualitative spatial reasoning (QSR) is an important field of AI that deals with qualitative aspects of spatial entities. Regions and their relationships are described in qualitative terms instead of numerical values. This approach models human based reasoning about such entities closer than other approaches. Any relationships between regions that we encounter in our daily life situations are normally formulated in natural language. For example, one can outline one's room plan to an expert by indicating which rooms should be connected to each other. Mereotopology as an area of QSR combines mereology, topology and algebraic methods. As mereotopology plays an important role in region based theories of space, our focus is on one of the most widely referenced formalisms for QSR, the region connection calculus (RCC). RCC is a first order theory based on a primitive connectedness relation, which is a binary symmetric relation satisfying some additional properties. By using this relation we can define a set of basic binary relations which have the property of being jointly exhaustive and pairwise disjoint (JEPD), which means that between any two spatial entities exactly one of the basic relations hold. Basic reasoning can now be done by using the composition operation on relations whose results are stored in a composition table. Relation algebras (RAs) have become a main entity for spatial reasoning in the area of QSR. These algebras are based on equational reasoning which can be used to derive further relations between regions in a certain situation. Any of those algebras describe the relation between regions up to a certain degree of detail. In this thesis we will use the method of splitting atoms in a RA in order to reproduce known algebras such as RCC15 and RCC25 systematically and to generate new algebras, and hence a more detailed description of regions, beyond RCC25.
Resumo:
This study examined the operational planning, implementation and execution issues of major sport events, as well as the mitigation and management strategies used to address these issues, with the aim of determining best practices in sport event operational planning. The three Research Questions were: 1) What can previous major sport events provide to guide the operational management of future events? 2) What are the operational issues that arise in the planning and execution of a major sport event, how are they mitigated and what are the strategies used to deal with these issues? 3) What are the best practices for sport event operational planning and how can these practices aid future events? Data collection involved a modified Delphi technique that consisted of one round of in-depth interviews followed by two rounds of questionnaires. Both data collection and analysis were guided by an adaptation of the work of Parent, Rouillard & Leopkey (2011) with a focus on previously established issue and strategy categories. The results provided a list of Top 26 Prominent Issues and Top 17 Prominent Strategies with additional issue-strategy links that can be used to aid event managers producing future major sport events. The following issue categories emerged as having had the highest impact on previous major sport events that participants had managed: timing, funding and knowledge management. In addition, participants used strategies from the following categories most frequently: other, formalized agreements and communication.