2 resultados para Calabi-Yau manifold

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The purpose of this study was to investigate Howard Gardner's (1983) Multiple Intelligences theory, which proposes that there are eight independent intelligences: Linguistic, Spatial, Logical/Mathematical, Interpersonal, Intrapersonal, Naturalistic, Bodily-Kinesthetic, and Musical. To explore Gardner's theory, two measures of each ability area were administered to 200 participants. Each participant also completed a measure of general cognitive ability, a personality inventory, an ability self-rating scale, and an ability self-report questionnaire. Nonverbal measures were included for most intelligence domains, and a wide range of content was sampled in Gardner's domains. Results showed that all tests of purely cognitive abilities were significantly correlated with the measure of general cognitive ability, whereas Musical, Bodily-Kinesthetic, and one of the Intrapersonal measures were not. Contrary to what Multiple Intelligences theory would seem to predict, correlations among the tests revealed a positive manifold and factor analysis indicated a large factor of general intelligence, with a mathematical reasoning test and a classification task from the Naturalistic domain having the highest ^- loadings. There were only minor sex differences in performance on the ability tests. Participants' self-estimates of ability were significantly and positively correlated with actual performance in some, but not all, intelligences. With regard to personality, a hypothesized association between Openness to Experience and crystallized intelligence was supported. The implications of the findings in regards to the nature of mental abilities were discussed, and recommendations for further research were made.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For inviscid fluid flow in any n-dimensional Riemannian manifold, new conserved vorticity integrals generalizing helicity, enstrophy, and entropy circulation are derived for lower-dimensional surfaces that move along fluid streamlines. Conditions are determined for which the integrals yield constants of motion for the fluid. In the case when an inviscid fluid is isentropic, these new constants of motion generalize Kelvin’s circulation theorem from closed loops to closed surfaces of any dimension.