6 resultados para CYCLIST, ENDURANCE PERFORMANCE, OXYGEN UPTAKE, SHORTTERM

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of psychological strategies on endurance performance and cognitive function in the heat is unclear. This thesis tested the effects of a two-week motivational self-talk (MST) intervention - specific to heat stress - on endurance capacity and cognitive function in the heat (35°C 50% RH). The study utilized a pre-test / post-test design testing endurance capacity using a time to exhaustion test (TTE) after exercise-induced hyperthermia. Cognitive function (e.g executive function) was tested at baseline in thermoneutral (22°C 30% RH), before (R1) and after the TTE (R2). MST led to a significant improvement (~30%) in TTE and significantly faster completion time with fewer errors made on executive function tasks at baseline and R2, but not in R1, while there were no differences in the control group. Overall, these results indicate that using a top-down regulation strategy consisting of self-contextualized MST can improve physical and cognitive performance in the heat.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Competitive sports participation in youth is becoming increasingly more common in the Western world. It is widely accepted that sports participation, specifically endurance training, is beneficial for physical, psychomotor, and social development of children. The research on the effect of endurance training in children has focused mainly on healthrelated benefits and physiological adaptations, particularly on maximal oxygen uptake. However, corresponding research on neuromuscular adaptations to endurance training and the latter's possible effects on muscle strength in youth is lacking. In children and adults, resistance training can enhance strength and mcrease muscle activation. However, data on the effect of endurance training on strength and neuromuscular adaptations are limited. While some evidence exists demonstrating increased muscle activation and possibly increased strength in endurance athletes compared with untrained adults, the neuromuscular adaptations to endurance training in children have not been examined. Thus, the purpose of this study was to examine maximal isometric torque and rate of torque development (RID), along with the pattern of muscle activation during elbow and knee flexion and extension in muscle-endurancetrained and untrained men and boys. Subjects included 65 males: untrained boys (n=18), endurance-trained boys (n=12), untrained men (n=20) and endurance-trained men (n=15). Maximal isometric torque and rate of torque development were measured using an isokinetic dynamometer (Biodex III), and neuromuscular activation was assessed using surface electromyography (SEMG). Muscle strength and activation were assessed in the dominant arm and leg, in a cross-balanced fashion during elbow and knee flexion and extension. The main variables included peak torque (T), RTD, rate of muscle activation (Q30), Electro-mechanical delay (EMD), time to peak RTD and co-activation index. Age differences in T, RTD, electro-mechanical delay (EMD) and rate of muscle activation (Q30) were consistently observed in the four contractions tested. Additionally, Q30, nonnalized for peak EMG amplitude, was consistently higher in the endurancetrained men compared with untrained men. Co-activation index was generally low in all contractions. For example, during maximal voluntary isometric knee extension, men were stronger, had higher RTD and Q30, whether absolute or nonnalized values were used. Moreover, boys exhibited longer EMD (64.8 ± 18.5 ms vs. 56.6 ± 15.3 ms, for boys and men respectively) and time to peak RTD (112.4 ± 33.4 ms vs. 100.8 ± 39.1 ms for boys and men, respectively). In addition, endurance-trained men had lower T compared with untrained men, yet they also exhibited significantly higher nonnalized Q30 (1.9 ± 1.2 vs. 1.1 ± 0.7 for endurance-trained men and untrained men, respectively). No training effect was apparent in the boys. In conclusion, the findings demonstrate muscle strength and activation to be lower in children compared with adults, regardless of training status. The higher Q30 of the endurance-trained men suggests neural adaptations, similar to those expected in response to resistance training. The lower peak torque may su9gest a higher relative involvement oftype I muscle fibres in the endurance-trained athletes. Future research is required to better understand the effect of growth and development on muscle strength and activation patterns during dynamic and sub-maximal isometric contractions. Furthennore, training intervention studies could reveal the effects of endurance training during different developmental stages, as well as in different muscle groups.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We explored the potential mediating influence of physical fitness on the relationship between academic performance and motor proficiency in children. 1864 students (F:926, M:938, age 11.91 (SD:0.34). Academic achievement was derived from an average of standardized tests of reading, writing, and math. The Bruininks-Oseretsky Test of Motor Performance (short-form) determined motor proficiency. Fitness (peak oxygen uptake) was established with the Léger 20-m Shuttle Run Test. OLS regression identified several significant predictors of academic performance. After controlling for age (p=0.0135), gender (p<0.0001), and parental education (p<0.0001), motor proficiency (p<0.0001), was significant. After adding physical fitness (p=0.0030) to the model the effect of motor proficiency remained significant however the point estimate was reduced from 0.0034 (p<0.0001) to 0.0026 (p<0.0001). These results suggest that physical fitness plays a mediating role on the relationship between academic performance and motor proficiency although both aerobic fitness and motor proficiency have independent roles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Four groups of rainbow trout, Salmo gairdneri, were acclimated to 2°, 10°, and 18°e, and to a diurnal temperature cycle (100 ± 4°C). To evaluate the influence of cycling temperatures in terms of an immediate as opposed to acclimatory response various ventilatory-cardiovascular rate functions were observed for trout, either acclimated to cycling temperatures or acclimated to constant temperatures and exposed to a diurnal temperature cycle for the first time (10° ± 4°C for trout acclimated to 10°C; 18°+ 4°C for trout acclimated to l8°e). Gill resistance and the cardiac to ventilatory rate ratio were then calculated. Following a post preparatory recovery period of 36 hr, measurements were made over a 48 hour period with the first 24 hours being at constant temperature in the case of statically-acclimated fish followed by 24 hours under cyclic temperature conditions. Trout exhibited marked changes in oxygen consumption (Vo ) with temp- 2 erature both between acclimation groups, and in response to the diurnal temperature cycle. This increase in oxygen uptake appears to have been achieved by adjustment of ventilatory and, to some extent, cardiovascular activity. Trout exhibited significant changes in ventilatory rate (VR), stroke volume (Vsv), and flow (VG) in response to temperature. Marked changes in cardiac rate were also observed. These findings are discussed in relation to their importance in convective oxygen transport via water and blood at the gills and tissues. Trout also exhibited marked changes in pressure waveforms associated with the action of the resp; ratory pumps with temperature. Mean differenti a 1 pressure increased with temperature as did gill resistance and utilization. This data is discussed in relation to its importance in diffusive oxygen transport and the conditions for gas exchange at the gills. With one exception, rainbow trout were able to respond to changes in oxygen demand and availability associated with changes in temperature by means of adjustments in ventilation, and possibly pafusion, and the conditions for gas exchange at the gills. Trout acclimated to 18°C, however, and exposed to high cyclic temperatures, showed signs of the ventilatory and cardiovascular distress problems commonly associated with low circulating levels of oxygen in the blood. It appears these trout were unable to fully meet the oxygen requirements associated with c~ling temperatures above 18°C. These findings were discussed in relation to possible limitations in the cardiovascular-ventilatory response at high temperatures. The response of trout acclimated to cycling temperatures was generally similar to that for trout acclimated to constant temperatures and exposed to cycling temperatures for the first time. This result suggested that both groups of fish may have been acclimated to a similar thermal range, regardless of the acclimation regime employed. Such a phenomenon would allow trout of either acclimation group to respond equally well to the imposed temperature cycle. Rainbow trout showed no evidence of significant diurnal rhythm in any parameters observed at constant temperatures (2°, 10°, and 18° C), and under a 12/12 light-dark photoperiod regime. This was not taken to indicate an absence of circadian rhythms in these trout, but rather a deficiency in the recording methods used in the study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developmental coordination disorder (p-DCD) is a neuro-developmental disorder featuring impairment in developing motor coordination. This study examined left ventricular mass (LVM) in children with p-DCD (n=63) and controls (n=63). LVM was measured using echocardiography. Body composition was determined using BOD POD and peak oxygen uptake (peak V02) was measured by a progressive exercise test. Height, weight and blood pressure were also measured. LVM was not significantly elevated in p-DCD compared to controls. Peak V02 was lower and SBP, BMI, HR, and BF(%) were significantly higher in p-DCD. They also demonstrated elevated stroke volume (SV), cardiac output (CO), end-diastolic volume, and ventricular diameter in diastole. In regression analyses, p-DCD was a significant predictor of SV and CO after accounting for height, FFM, V02FFM, and sex. These differences in children with p-DCD indicate obesity related changes in the left ventricle and may represent early stages of developing hypertrophy of the left ventricle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Most research on the effects of endurance training has focused on endurance training's health-related benefits and metabolic effects in both children and adults. The purpose of this study was to examine the neuromuscular effects of endurance training and to investigate whether they differ in children (9.0-12.9 years) and adults (18.4-35.6 years). Maximal isometric torque, rate of torque development (RTD), rate of muscle activation (Q30), electromechanical delay (EMD), and time to peak torque and peak RTD were determined by isokinetic dynamometry and surface electromyography (EMG) in elbow and knee flexion and extension. The subjects were 12 endurance-trained and 16 untrained boys, and 15 endurance-trained and 20 untrained men. The adults displayed consistently higher peak torque, RTD, and Q30, in both absolute and normalized values, whereas the boys had longer EMD (64.7+/-17.1 vs. 56.6+/-15.4 ms) and time to peak RTD (98.5+/-32.1 vs. 80.4+/-15.0 ms for boys and men, respectively). Q30, normalized for peak EMG amplitude, was the only observed training effect (1.95+/-1.16 vs. 1.10+/-0.67 ms for trained and untrained men, respectively). This effect could not be shown in the boys. The findings show normalized muscle strength and rate of activation to be lower in children compared with adults, regardless of training status. Because the observed higher Q30 values were not matched by corresponding higher performance measures in the trained men, the functional and discriminatory significance of Q30 remains unclear. Endurance training does not appear to affect muscle strength or rate of force development in either men or boys.