2 resultados para COMMUNICATION AND INFORMATION

em Brock University, Canada


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects oftwo types of small-group communication, synchronous computer-mediated and face-to-face, on the quantity and quality of verbal output were con^ared. Quantity was deiSned as the number of turns taken per minute, the number of Analysis-of-Speech units (AS-units) produced per minute, and the number ofwords produced per minute. Quality was defined as the number of words produced per AS-unit. In addition, the interaction of gender and type of communication was explored for any differences that existed in the output produced. Questionnaires were also given to participants to determine attitudes toward computer-mediated and face-to-face communication. Thirty intermediate-level students fi-om the Intensive English Language Program (lELP) at Brock University participated in the study, including 15 females and 15 males. Nonparametric tests, including the Wilcoxon matched-pairs test, Mann-Whitney U test, and Friedman test were used to test for significance at the p < .05 level. No significant differences were found in the effects of computer-mediated and face-to-face communication on the output produced during follow-up speaking sessions. However, the quantity and quality of interaction was significantly higher during face-to-face sessions than computer-mediated sessions. No significant differences were found in the output produced by males and females in these 2 conditions. While participants felt that the use of computer-mediated communication may aid in the development of certain language skills, they generally preferred face-to-face communication. These results differed fi-om previous studies that found a greater quantity and quality of output in addition to a greater equality of interaction produced during computer-mediated sessions in comparison to face-to-face sessions (Kern, 1995; Warschauer, 1996).

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Individuals who have sustained a traumatic brain injury (TBI) often complain of t roubl e sleeping and daytime fatigue but little is known about the neurophysiological underpinnings of the s e sleep difficulties. The fragile sleep of thos e with a TBI was predicted to be characterized by impairments in gating, hyperarousal and a breakdown in sleep homeostatic mechanisms. To test these hypotheses, 20 individuals with a TBI (18- 64 years old, 10 men) and 20 age-matched controls (18-61 years old, 9 men) took part in a comprehensive investigation of their sleep. While TBI participants were not recruited based on sleep complaint, the fmal sample was comprised of individuals with a variety of sleep complaints, across a range of injury severities. Rigorous screening procedures were used to reduce potential confounds (e.g., medication). Sleep and waking data were recorded with a 20-channel montage on three consecutive nights. Results showed dysregulation in sleep/wake mechanisms. The sleep of individuals with a TBI was less efficient than that of controls, as measured by sleep architecture variables. There was a clear breakdown in both spontaneous and evoked K-complexes in those with a TBI. Greater injury severities were associated with reductions in spindle density, though sleep spindles in slow wave sleep were longer for individuals with TBI than controls. Quantitative EEG revealed an impairment in sleep homeostatic mechanisms during sleep in the TBI group. As well, results showed the presence of hyper arousal based on quantitative EEG during sleep. In wakefulness, quantitative EEG showed a clear dissociation in arousal level between TBls with complaints of insomnia and TBls with daytime fatigue. In addition, ERPs indicated that the experience of hyper arousal in persons with a TBI was supported by neural evidence, particularly in wakefulness and Stage 2 sleep, and especially for those with insomnia symptoms. ERPs during sleep suggested that individuals with a TBI experienced impairments in information processing and sensory gating. Whereas neuropsychological testing and subjective data confirmed predicted deficits in the waking function of those with a TBI, particularly for those with more severe injuries, there were few group differences on laboratory computer-based tasks. Finally, the use of correlation analyses confirmed distinct sleep-wake relationships for each group. In sum, the mechanisms contributing to sleep disruption in TBI are particular to this condition, and unique neurobiological mechanisms predict the experience of insomnia versus daytime fatigue following a TBI. An understanding of how sleep becomes disrupted after a TBI is important to directing future research and neurorehabilitation.