14 resultados para CARBENE LIGANDS
em Brock University, Canada
Resumo:
One of the various functions of proteins in biological systems is the transport of small molecules, for this purpose proteins have naturally evolved special mechanisms to allow both ligand binding and its subsequent release to a target site; a process fundamental to many biological processes. Transport of Vitamin E (a-tocopherol), a lipid soluble antioxidant, to membranes helps in the protection of polyunsaturated fatty acids against peroxidative damage. In this research, the ligand binding characteristics of several members of the CRALTRIO family of lipid binding proteins was examined; the recombinant human a-Tocopherol Transfer Protein (a-TIP), Supernatant Protein Factor (SPF)ffocopherol Associated Protein (TAP), Cellular Retinaldehyde Binding Protein (CRALBP) and the phosphatidylinositol transfer protein from S. cerevisiae Sec 14p. Recombinant Sec 14p was expressed and purified from E. coli for comparison of tocopherol binding to the two other recombinant proteins postulated to traffic a-tocopherol. Competitive binding assays using [3H]-a-tocopherol and Lipidex-l000 resin allowed determination of the dissociation constants ~) of the CRAL-TRIO proteins for a-tocopherol and - 20 hydrophobic ligands for evaluation of the possible biological relevance of the binding interactions observed. The KIs (nM) for RRR-a-tocopherol are: a-TIP: 25.0, Sec 14p: 373, CRALBP: 528 and SPFffAP: 615. This indicates that all proteins recognize tocopherol but not with the same affinity. Sec 14p bound its native ligand PI with a KI of381 whereas SPFffAP bound PI (216) and y-tocopherol (268) similarly in contrast to the preferential binding ofRRR-a-tocopherol by a-TIP. Efforts to adequately represent biologically active SPFff AP involved investigation of tocopherol binding for several different recombinant proteins derived from different constructs and in the presence of different potential modulators (Ca+2, Mg+2, GTP and GDP); none of these conditions enhanced or inhibited a-tocopherol binding to SPF. This work suggests that only aTTP serves as the physiological mediator of a-tocopherol, yet structural homology between proteins allows common recognition of similar ligand features. In addition, several photo-affmity analogs of a-tocopherol were evaluated for their potential utility in further elucidation of a-TTP function or identification of novel tocopherol binding proteins.
Resumo:
The work to be presented herein illustrates several important facts. First, the synthesis of BIBOL (19), a 1,4-diol derived from the monoterpene camphor has allowed us to demonstrate that oxidative dimerizations of enolates can, and do proceed with nearly complete diastereoselectivity under kinetically controlled conditions. The yield of BIBOL is now 50% on average, with a 10% yield of a second diastereomer, which is likely the result of a non-kinetic hydride reduction, thereby affording the epimeric alcohol, 20, coupled on the exo face of camphor. This implies the production of 60% of a single coupling diastereomer. No other diastereomers from the reduction were observed. The utility of BEBOL has been illustrated in early asymmetric additions of diethylzinc to aryl aldehydes, with e.e.'s as high as 25-30%. '^' To further the oxidative coupling work, the same methodology which gave rise to BIBOL was applied to the chiral pool ketone, menthone. Interestingly, this gave an excellent yield of the a-halohydrin (31), which is the result of a chlorination of menthone. This result clearly indicates the high stereoselectivity of the process regardless of the outcome, and has illustrated an interesting dichotomy between camphor and menthone. The utility of the chlorination product as a precursor other chiral ligands is currently being investigated. > ' Finally, a new series of 1,3-diols as well as a new aminoalcohol have successfully been synthesized from highly diastereoselective aldol/mannich reactions. Early studies have indicated their potential in asymmetric catalysis, while employing pi-stack interactions as a means of controlling enantioselective aldol reactions.
Resumo:
To further understand in vivo localization and trafficking of a-tocopherol (a-Toe), the most biologically active form of vitamin E, between lipid environments, tocopherols are required that can be followed by teclu1iques such as confocal microscopy and fluorescence resonance energy transfer (FRET) assays. To this end, sixteen fluorescent analogues of a-tocopherol (la-d [(1)anthroy loxy -a-tocopherols, A O-a-Toes], 2a-d [w-nitro benzoxadiazole-a-tocopherols, NBD-aToes], 3a-d [w-dansyl-a-tocopherols, DAN-a-Toes], and 4a-d [w-N-methylanthranilamide-atocopherols, NMA-a-TocsD were prepared by substituting fluorescent labels at the terminus of w-functionalized alkyl chains extending from C-2 of the chroman ring while retaining key binding features of the natural ligand. These compounds were prepared starting from (S)-Trolox® acid VIa esterification, protection, and reduction producing the silyl-protected (S)-Trolox aldehyde that was coupled using Wittig chemistry to different w-hydroxyalkylphosphonium bromides. Reduction of the alkene generated the w-hydroxy functionalized 2-n-alkyl intermediates 9a-d having the necessary 2R stereochemistry. A series of functional group manipulations including mesylation, substitution with azide, and hydride reduction provided w-amino functionalized intermediates 12a-d as well. Coupling intermediates 9a-d and 12a-d with the selected fluorophores (9- anthracene carboxylic acid, 4-chloro-7-nitrobenz-2-oxa-l,3-diazole, 5- dimethylaminonapthalene-l-sulfonyl chloride, and I-methyl-2H-3,1-benzoxazine-2,4(1H)dione), followed by deprotection of the phenolic silyl group, gave the desired fluorescent ligands la-d, 2a-d, 3a-d and 4a-d in good yield. Assessment of their binding affinities with recombinant human a-tocopherol transfer protein (ha-TTP) utilizing fluorescent titration binding assays identified competent ligands for further use in protein studies. Compounds Id (C9-AO-a-Toc) and 2d (C9-NBD-a-Toc) both having nonyl alkyl chain extensions between the chromanol and fluorophore were shown to bind specifically to ha-TTP with dissociation constants (KdS) of approximately 280 nM and 55 nM respectively, as compared to 25 nM for the natural ligand 2R,4'R,^'R-a-tocophQxoL.
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules .. valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the spectrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucain~ binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
New and robust methodologies have been designed for palladium-catalyzed crosscoupling reactions involving·a novel·class oftertiary phosphine ligand incorporating a phospha-adamantane framework. It has been realized that bulky, electron-rich phosphines, when used as ligands for palladium, allow for cross-coupling reactions involving even the less reactive aryl halide substrates with a variety of coupling partners. In an effort to design new ligands suitable for carrying out cross-coupling transformations, the secondary phosphine, 1,3,5,7-tetramethyl-2,4,8-trioxa-6phosphaadamantane was converted into a number of tertiary phosphine derivatives. The ability of these tertiary phosphaadamantanes to act as effective ligands in the palladiumcatalyzed Suzuki cross-coupling was examined. 1,3,5,7-Tetramethyl-6-phenyl-2,4,8trioxa- 6-phosphaadamantane (PA-Ph) used in combination with Pdz(dba)3permitted the reaction of an array of aryl iodides, bromides and chlorides with a variety arylboronic acids to give biaryls in good to excellent yields. Subsequently, palladium complexes of PA-Ph were prepared and isolated in high yields as air stable palladium bisphosphine complexes. Two different kinds of crystals were isolated and upon characterization revealed two complexes, Pd(PA-Ph)z.dba and Pd(PA-Ph)zOz. Preliminary screening for their catalytic activity indicated that the former is more reactive than the latter. Pd(PAPh) z.dba was applied as the catalyst for Sonogashira cross-coupling reactions of aryl iodides and bromides and in the reactions of aryl bromides and chlorides with ketones to give a-arylated ketones at mild temperatures in high yields.
Resumo:
The cocondensation of nickel with a number of unsaturated ligands was studied, as was the cocondensation with a number of mixed ligand systems. Enamines were found not to react with nickel while acrylonitrile was polymerized. In the mixed ligand syst.ems different products were obtained than when the ligands were cocondensed individually. Cocondensations of benzyl halide/allyl halide mixtures gave unstable products that were not observed when the halides were cocondensed individually. The effect of Kao-Wool insulation on nickel/benzyl halide cocondensations was found to be significant. Kao-Wool caused the bulk of the benzyl halide to be polymeri zed to a number of poly-benzylic species. An alkali metal reactor was designed for the evaporation of sodium and potassium atoms into cold solutions of metal halide and an or ganic substrate. This apparatus was used to synthesize Ni(P¢3 )3' but proved unsuccessful for synthesizing a nickel-enamine compound.
Resumo:
New and robust methodologies have been designed for palladiumcatalyzed cross-coupling reactions involving a library of novel tertiary phosphine ligands incorporating a phospha-adamantane framework. The secondary phosphine, l,3,5,7-tetramethyl-2,4,8-trioxa-6-phospha-adamantane was converted into a small library of tertiary phosphine derivatives and the ability of these tertiary phosphaadamantanes to act as effective ligands in the palladium-catalyzed amination reaction and p-alkyl-Suzuki cross-coupling was examined. l,3,5,7-Tetramethyl-6- phenyl-2,4,8-trioxa-6-phosphaadamantane (PA-Ph) used in combination with Pd2(dba)3 CHCI3 facilitated the reaction of an array of aryl iodides, bromides and chlorides with a variety secondary and primary amines to give tertiary and secondary amines respectively in good to excellent yields. 8-(2,4-Dimethoxyphenyl)- l,3,5,7-tetramethyl-2,4,6-trioxa-8-phospha-tricyclo[3.3.1.1*3,7*]decane used in combination with Pd(0Ac)2 permitted the reaction of an array of alkyl iodides, and bromides with a variety aryl boronic acids and alkyl 9-BBN compounds in good to excellent yields. Subsequent to this work, the use of phosphorous based ionic liquids, specifically tetradecyltrihexylphosphonium chloride (THPC), in the Heck reaction provided good to excellent yields in the coupling of aryl iodides and bromides with a variety of olefins.
Resumo:
The development of new methodology for the asymmetric synthesis of chiral organic compounds is a major focus in modem organic chemistry. The use of chiral catalysts is replacing chiral auxiliaries as a new tool for synthetic chemists. An efficient chiral catalyst allows for large quantities of optically active product to be obtained on use of relatively small amount of enantiopure material, without the need for the removal and recovery of a chiral auxiliary. Furthermore, the most practical catalytic methods utilize an inexpensive and readily available chiral ligand that can provide high and predictable enantioselectivity across a wide range of substrates. In our project, two type of versatile, upgraded chiral ligands have been designed and synthesized. Their application in Simmons-Smith type cyclopropanation is investigated, and the pleasing results suggest that they are the potential catalytic enantioselective candidates to build C-C bonds.
Resumo:
Cytoch ro me c oxidase (ferrocytochrome c : 02 oxidoreductase ; EC 1.9. 3.1) is the terminal enzyme in the mitochondrial electron transport chain, catalyzing the transfer of electrons from ferrocytochrome c to molecular oxygen. The effects of two large amphiphilic molecules - valinomycin and dibucaine upon the spectra of the isolated enzyme and upon the activity of both isolated enzyme and enzyme in membrane systems are investigated by using spectrophotometric and oxygen electrode techniques. The results show that both valinomycin and dibucaine change the Soret region of the speetrum and cause a partial inhibition in a concentration range higher than that in which they act as ionophores. It is concluded that both valinomycin and dibucaine binding induce a conformational change of the protein structure which modifies the spectrum of the a3 CUB centre and diminishes the rate of electron transfer between cytochrome a and the binuclear centre.
Resumo:
Iridium complexes with bidentate P,N ligands represent a class of catalysts that significantly expand the application range of asymmetric hydrogenation. New substrate classes, for which there have previously been no suitable catalysts, can now be efficiently hydrogenated in high conversion and enantioselectivity. These substrates are often of synthetic importance, thus iridium catalysis represents a significant advance in the field of asymmetric catalysis. Planar chiral ferrocenyl aminophosphine ligands in which both heteroatoms were directly bound to the cyclopentadienyl ring were prepared by BF3-activated lithiationsubstitution in the presence of a chiral diamine in 49-59% yield and 75-85% enantiomeric excess. Some of these ligands were recrystallized to enantiomeric purity via ammonium fluoroborate salt formation of the phosphine sulfide. A crystal structure of one of these compounds was obtained and features an intramolecular hydrogen bond between the nitrogen, hydrogen, and sulfur atoms. Neutralization, followed by desulfurization, provided the free ligands in enantiomeric purity. Iridium complexes with these ligands were formed via reaction with [Ir(COD)Clh followed by anion exchange with NaBArF. These complexes were successfully applied in homogeneous hydrogenation of several prochiral substrates, providing products in up to 92% enantiomeric excess. Variation of the dimethyl amino group to a pyrrolidine group had a negative effect on the selectivity of hydrogenation. Variation of the substituents on phosphorus to bulkier ortho-tolyl groups had a positive effect, while variation to the more electron rich dicyclohexyl phosphine had a negative effect on selectivity.
Resumo:
The synthesis and studies of two classes of poly dentate ligands are presented as two projects. In project 1, four new carboxamide ligands have been synthesised via the condensation of 2,2',6,6'-tetrachloroformyl-4,4'-bipyridine or 2,6-dichloroformyl pyridine together with heterocyclic amines containing pyridine or pyrazole substituents. The coordination chemistry of these ligands has been investigated and studies have shown that with a Cu(II) salt, two carboxamide ligands LJ and L2 afford large clusters with stoichiometries [Cu8(L1)4Cl16].CHCl3.5H2O.7CH3OH (I) and [Cu9(L2)6Cl6].CH3OH.5H2O.(C2H5)3N (II) respectively. [molecular diagram availabel in pdf]. X-ray diffraction studies of cluster (I) reveal that it has approximate S4 symmetry and is comprised of four ligands and eight copper (II) centers. Here, coordination takes place via amide 0 atoms, and pyrazole nitrogens. This complex is the first reported example of an octanuclear copper cluster with a saddle-shaped structure. The second cluster comprises nine copper ions that are arranged in a cyclic array. Each ligand coordinates three copper centers and each copper ion shares two ligands to connect six ligands with nine copper ions. The amide nitrogens are completely deprotonated and both amide Nand 0 atoms coordinate the metal centres. The cluster has three-fold symmetry. There are six chloride ions, three of which are bridging two neighbouring Cu(II) centres. Magnetic studies of (I) and (II) reveal that both clusters display weak antiferromagnetic interactions between neighbouring Cu(II) centers at low temperature. In the second project, three complexes with stoichiometries [Fe[N302](SCN)2]2 (III), R,R-[Fe[N3O2](SCN)2 (IV) and R,R-]Fe[N3O2](CN)2] (V) were prepared and characterized, where [N302] is a pentadentate macrocycle. Complex (III) was prepared via the metal templated Schiff-base condensation of 2,2',6,6'-tetraacetyl-4,4'-bipyridine together with 3,6-dioxaoctane-I,8-diamine and comprises of a dimeric macro cycle where the two Fe(II) centres are in a pentagonal-bipyramidal environment with the [N302] ligands occupying the equatorial plane and two axial NCS ligands. Complexes (IV) and (V) were prepared via the condensation of 2,6-diacetylpyridine together with a chiral diamine in the presence of FeCh. The synthetic strategy for the preparation of the chiral diamine (4R,5R)-4,5-diphenyl-3,6-dioxa-I,8-octane-diamine was elucidated. The chirality of both macrocycles (IV) and (V) was probed by circular dichroism spectroscopy. The crystal structure of (IV) at 200 K contains two independent molecules in the unit cell, both of which contain a hepta-coordinated Fe(II) and axial NCS ligands. Variable temperature magnetic susceptibility and structural studies are consistent with a high spin Fe(II) complex and show no evidence of any spin crossover behaviour. In contrast, the bis cyanide derivative (V) crystallizes with two independent molecules in the unit cell, both of which have different coordination geometries consistent with different spin states for the two Fe(II) centres. At 250 K, the molecular structure of (V) shows the presence of both 7- and a 6-coordinate Fe(II) complexes in the crystal lattice. As the temperature is lowered, the molecules undergo a structural change and at 100 K the structural data is consistent with a 6- and 5-coordinate Fe(II) complex in the unit cell. Magnetic studies confirm that this complex undergoes a gradual, thermal, spin crossover transition in the solid state. Photomagnetic measurements indicate this is the first chiral Fe (II) sea complex to exhibit a LIESST.
Resumo:
The initial employment of N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2) as bridging/chelating ligand in metal cluster chemistry has provided access to five new polynuclear NiII complexes with large nuclearities, unprecedented metal core topologies, and interesting magnetic properties. The obtained results are presented in two projects. The first project includes the investigation of the general Ni2+/RCO2-/sacbH2 reaction system (where R- = CH3-, But-, ButCH2-) in which the nature of the carboxylic acid was found to be of crucial importance, affecting enormously the nuclearity of the resulting complexes. The second project deals with the study of the general Ni2+/X-/sacbH2 reaction system (where X- = inorganic anions) under basic conditions, yielding new cluster compounds with molecular chain-like structures and ferromagnetic exchange interactions between the metal centers.
Resumo:
The preparation and characterization of coordination complexes of Schiff-base and crown ether macrocycles is presented, for application as contrast agents for magnetic resonance imaging, Project 1; and single-molecule magnets (SMMs), Projects 2 and 3. In Project 1, a family of eight Mn(II) and Gd(III) complexes of N3X2 (X = NH, O) and N3O3 Schiff-base macrocycles were synthesized, characterized, and evaluated as potential contrast agents for MRI. In vitro and in vivo (rodent) studies indicate that the studied complexes display efficient contrast behaviour, negligible toxicity, and rapid excretion. In Project 2, DyIII complexes of Schiff-base macrocycles were prepared with a view to developing a new family of mononuclear Ln-SMMs with pseudo-D5h geometries. Each complex displayed slow relaxation of magnetization, with magnetically-derived energy barriers in the range Ueff = 4 – 24 K. In Project 3, coordination complexes of selected later lanthanides with various crown ether ligands were synthesized. Two families of complexes were structurally and magnetically analyzed: ‘axial’ or sandwich-type complexes based on 12-crown-4 and 15-crown-5; and ‘equatorial’ complexes based on 18-crown-6. Magnetic data are supported by ab initio calculations and luminescence measurements. Significantly, the first mononuclear Ln-SMM prepared from a crown ether ligand is described.
Resumo:
The employment of the bridging/chelating Schiff bases, N-salicylidene-4-methyl-o-aminophenol (samphH2) and N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in nickel cluster chemistry has afforded eight polynuclear Ni(II) complexes with new structural motifs, interesting magnetic and optical properties, and unexpected organic ligand transformations. In the present thesis, Chapter 1 deals with all the fundamental aspects of polynuclear metal complexes, molecular magnetism and optics, while research results are reported in Chapters 2 and 3. In the first project (Chapter 2), I investigated the coordination chemistry of the organic chelating/bridging ligand, N-salicylidene-4-methyl-o-aminophenol (samphH2). The general NiII/tBuCO2-/samphH2 reaction system afforded two new tetranuclear NiII clusters, namely [Ni4(samph)4(EtOH)4] (1) and [Ni4(samph)4(DMF)2] (2), with different structural motifs. Complex 1 possessed a cubane core while in complex 2 the four NiII ions were located at the four vertices of a defective dicubane. The nature of the organic solvent was found to be of pivotal importance, leading to compounds with the same nuclearity, but different structural topologies and magnetic properties. The second project, the results of which are summarized in Chapter 3, included the systematic study of a new optically-active Schiff base ligand, N-naphthalidene-2-amino-5-chlorobenzoic acid (nacbH2), in NiII cluster chemistry. Various reactions between NiX2 (X- = inorganic anions) and nacbH2 were performed under basic conditions to yield six new polynuclear NiII complexes, namely (NHEt3)[Ni12(nacb)12(H2O)4](ClO4) (3), (NHEt3)2[Ni5(nacb)4(L)(LH)2(MeOH)] (4), [Ni5(OH)2(nacb)4(DMF)4] (5), [Ni5(OMe)Cl(nacb)4(MeOH)3(MeCN)] (6), (NHEt3)2[Ni6(OH)2(nacb)6(H2O)4] (7), and [Ni6(nacb)6(H2O)3(MeOH)6] (8). The nature of the solvent, the inorganic anion, X-, and the organic base were all found to be of critical importance, leading to products with different structural topologies and nuclearities (i.e., {Ni5}, {Ni6} and {Ni12}). Magnetic studies on all synthesized complexes revealed an overall ferromagnetic behavior for complexes 4 and 8, with the remaining complexes being dominated by antiferromagnetic exchange interactions. In order to assess the optical efficiency of the organic ligand when bound to the metal centers, photoluminescence studies were performed on all synthesized compounds. Complexes 4 and 5 show strong emission in the visible region of the electromagnetic spectrum. Finally, the ligand nacbH2 allowed for some unexpected organic transformations to occur; for instance, the pentanuclear compound 5 comprises both nacb2- groups and a new organic chelate, namely the anion of 5-chloro-2-[(3-hydroxy-4-oxo-1,4-dihydronaphthalen-1-yl)amino]benzoic acid. In the last section of this thesis, an attempt to compare the NiII cluster chemistry of the N-naphthalidene-2-amino-5-chlorobenzoic acid ligand with that of the structurally similar but less bulky, N-salicylidene-2-amino-5-chlorobenzoic acid (sacbH2), was made.