10 resultados para C57l Gallstone-susceptible Mouse

em Brock University, Canada


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the developing mouse embryo, the diploid trophectoderm is known to undergo a diploid to giant cell transformation. These cells arise by a process of endoreduplication, characterized by replication of the entire genome without subsequent mitosis or cell division, leading to polyploidy and the formation of giant nuclei. Studies of 13.5 day rat trophoblast derived from the parietal yolk sac have indicated a relatively low rate of DNA polymerase a activity, the noinnal eukaryotic replicase, in comparison to that of DNA polymerase g. These results have suggested that endoreduplication in trophoblast giant cells may not employ the normal replicase enzyme, DNA polymerase a. In order to determine whether a 'switch' from DNA polymerase to DNA polymerase is a necessary concomitant of the diploid to giant cell transformation, two distinct populations of trophoblast giant cells, the primary giant cell derived from the mural trophectoderm and the secondary giant cell derived from the polar trophoectoderm were used. These two populations of trophoblast giant cells can be obtained from the tissue outgrowths of 3.5da blastocysts and the extraembryonic ectoderm (EX) and ectoplacental cone (EPC) of 7.5 day embryos respectively. Tissue outgrowths were treated with aphidicolin, a specific reversible inhibitor of eukaryotic DNA polymerase a, on various days after explantation. The effect of aphidicolin treatment was assessed both qualitatively, using autoradiography and quantitatively by scintillation counting and Feulgen staining. 3 DNA synthesis was measured in control and treated cultures after a Hthymidine pulse. Scintillation counts of the embryo proper revealed that DNA synthesis was consistently inhibited by greater than 907. in the presence of aphidicolin. Inhibition of DNA synthesis in the EX and EPC varied between 81-957. and 82-987. respectively, indicating that most DNA synthesis was mediated by DNA polymerase a, but that a small but significant amount of residual synthesis was indicated. A qualitative approach was then applied to determine whether the apparent residual DNA synthesis was restricted to a subpopulation of giant cells or whether all giant cells displayed a low level of DNA synthesis. Autoradiographs of the ICM of blastocysts and the embryo proper of 7.5da embryos, which acted as diploid control population, was completely inhibited regardless of duration in explant culture. In contrast, primary trophoblast giant cells derived from blastocysts and secondary giant cells derived from the EX and EPC were observed to possess some heavily labelled cells after aphidicolin treatment. These results suggest that although DNA polymerase a is the primary replicating enzyme responsible for endoreduplication in mouse trophoblast giant cells, some nonactivity is also observed. A DNA polymerase assay employing tissue lysates of outgrown 7.5da embryo, EX and EPC tissues was used to attempt to confirm the presence of higher nonactivity in tissues possessing trophoblast giant cells. Employing a series of inhibitors of DNA polymerases, it would appear that DNA polymerase a is the major polymerase active in all tissues of the 7.5da mouse embryo. The nature of the putative residual DNA synthetic activity could not be unequivically determined in this study. Therefore, these results suggest that both primary and secondary trophoblast giant cells possess and use DNA polymerase a in endoreduplicative DNA synthesis. It would appear that the high levels of DNA polymerase g activity reported in trophoblast tissue derived from the 13.5 da rat yolk sac was not a general feature of all endoreduplication.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Large forces are the primary mechanism of injury in muscular dystrophy, and muscular dystrophy is especially damaging to type IIB muscle fibers. It was hypothesized that post-tetanic potentiation (PTP) would be down-regulated to prevent damage in Xlinked muscular dystrophy (mdx) mice since PTP increases force and PTP effects are greatest in IIB fibers. PTP experiments were performed on the extensor digitorum longus (EDL) of 50 day old mdx (YM) and C57BL/10 (YC) mice and 10 month old mdx (OM) and C57B1710 (OC) mice. Twitch and tetanic forces were lower in mdx than controls and lower in younger than older mice. Contrary to the hypothesis, PTP was higher in both mdx groups compared to controls. OM potentiated more than any other condition (OM: 29.8%, OC: 23.2%, YM: 21.9%, YC: 17.2%). In accordance with literature PTP increased in the older groups. To explain PTP changes, fiber typing and Western blots for myosin light chain kinase (MLCK) were performed. YM and YC had similar fiber type profiles (2% I, 58% IIX/D and 40% IIB). In accordance with literature but contrary to expected conditions for elevated PTP, OM had a slower fiber type profile (1.7% I, 69% IIX/D and 29% IIB) than OC (0.4% I, 61% IIX/D and 38% IIB). No differences were found in MLCK expression. It seems that PTP is up-regulated to maintain muscle function rather than being down-regulated to prevent muscle damage. Ca""^ transient and myosin phosphorylation measurements would be beneficial in explaining increased PTP seen in this study.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pancreatic deoxyribonuclease preferentially digests active genes during all phases of the cell cycle including mitosis. Recently, a DNAse I-directed in ~ nick translation technique has been used to demonstrate differences in the DNAse I sensitivity of euchromatic and heterochromatic regions of mitotic chromosomes. This ill ~ technique has been used in this study to ask whether facultative heterochromatin of the inactive X chromosome can be distinguished from the active X chromosome in mouse and human tissues. In addition to this, in ~ nick translation has been used to distinguish constitutive heterochromatin in mouse and human mitotic chromosomes. Based on relative levels of DNAse I sensitivity, the inactive X chromosome could not be distinguished from the active X chromosome in either mouse or human tissues but regions of constitutive heterochromatin could be distinguished by their relative DNAse I insensitivity. The use of !D situ nick translation was also applied to tissue sections of 7.5 day mouse embryos to ask whether differing levels of DNAse I sensitivity could be detected between different tissue types. Differences in DNAse I sensitivities were detected in three tissues examined; embryonic ectoderm, an embryo-derived tissue, and two extraembryonic tissues, extraembryonic ectoderm and ectoplacental cone. Embryonic ectoderm and extraembryonic ectoderm nuclei possessed comparable levels of DNAse I sensitivity while ectoplacental cone was significantly less DNAse I sensitive. This suggests that tissue-specific mechanisms such as chromatin structure may be involved in the regulation of gene activity in certain tissue types. This may also shed some light on possible tissue specific mechanisms regulating X chromosome activity in the developing mouse embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spontaneous teratocarcinomas are ovarian or testicular tumors which have their origins in germ cells. The tumors contain a disorganized array of benign differentiated cells as well as an undifferentiated population of malignant stem cells, the embryonal carcinoma or EC cells. These pluripotent stem cells in tissue culture share many properties with the transient pluripotent cells of the early embryo, and might therefore serve as models for the investigation of developmental events ill vitro. The property of EC cells of prime interest in this study is an in vivo phenomenon. Certain EC cell lines are known to be regulated ill vivo and to differentiate normally in association with normal embryonic cells, resulting in chimeric mice. These mice have two genetically distinct cell populations, one of which is derived from the originally malignant EC cells. This has usually been accomplished by injection of the EC cells into the Day 3 blastocyst. In this study, the interactions between earlier stage embryos and EC cells have been tested by aggregating clumps of EC cells with Day 2 embryos. The few previous aggregation studies produced a high degree of abnormality in chimeric embryos, but the EC cells employed had known chromosomal abnormalities. In this study, two diploid EC cell lines (P19 and Pi0) were aggregated with 2.5 day mouse embryos, and were found to behave quite differently in the embryonic environment. P19 containing aggregates generally resorbed early, and the few embryos recovered at midgestation were normal and non-chimeric. Pi0 containing aggregates survived in high numbers to midgestation, and the Pi0 cells were very successful in colonizing the embryo. All these embryos were chimeric, and the contribution by the EC cells to each chimera was very high. However, these heavily chimeric embryos were all abnormal. Blastocyst injection had previously produced some abnormal embryos with high Pl0 contributions in addition to the live born mice, which had lower EC contributions. This study now adds more support to the hypothesis that high EC contributions may be incompatible with normal development. The possibility that the abnormalities were due to the mixing of temporally asynchronous embryonic cell types in the aggregates was tested by aggregating normal pluripotent cells taken from 3.5 day embryos with 2.5 day embryos. Early embryo loss was very high, and histological studies showed that the majority of these embryos died by 6.5 days development. Some embryos escaped this early death such that some healthy chimeras were recovered, in contrast to recovery of abnormal chimeric embryos following Pl0-morula aggregations, and non-chimeric embryos following P19-morula aggregations. This somewhat surprising adverse effect on development following aggregation of normal cell types suggests that there are developmental difficulties associated with the mixing of asynchronous cell types in aggregates. However, the greater magnitude of the adverse effects when the aggregates contained tumor derived cells suggests that EC cells should not be considered the complete equivalent of the pluripotent cells of the early embryo.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Involvement of ethylene in the etiology of tomato plants (Lycopersicon esculentum) infected with the root-knot nematode (Meloidogyne incognita) was investigated. Endogenous root concentrations of ethylene were not significantly different in uninfected resistant var. Anahu and susceptible var. Vendor plants. Exposure of resistant plants to high doses of infectious nematode larvae did not affect root ethylene concentrations during the subsequent 30 day period. The possibility that ethylene may be involved in the mechanism of resistance is therefore not supported by these experiments. In no experiments did ethylene concentrations in roots of susceptible plants increase significantly subsequent to ~ incognita infestation. This result is not consistent with the hypothesis in the literature which suggests that increased ethylene production accompanies gall formation. Growth of susceptible tomato plants was affected by ~ incognita infestation such that root weights increased (due to galling), stem heights decreased and top weights increased. The possibility that alterations in stem growth resulted from increased production of 'stress' ethylene is discussed. Growth of resistant plants was unaffected by exposure to high doses of ~ incognita and galls were never detected on the roots of these plants. Root ethane concentrations generally varied in parallel with root ethylene concentrations although ethane concentrations were without exception greater. In 4 of 6 experiments conducted ethane/ethylene ratios increased significantly with time. These results are discussed in the light of published data on the relationship between ethane and ethylene synthesis. The term infested is used throughout this thesis in reference to plants whose root systems had been exposed to nematodes and does not distinguish between the susceptible and resistant response.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that the potentiation of dynamic function was dependent upon both length change speed and direction. Mouse EDL was cycled in vitro (25º C) about optimal length (Lo) with constant peak strain (± 2.5% Lo) at 1.5, 3.3 and 6.9 Hz before and after a conditioning stimulus. A single pulse was applied during shortening or lengthening and peak dynamic (concentric or eccentric) forces were assessed at Lo. Stimulation increased peak concentric force at all frequencies (range: 19 ± 1 to 30 ± 2%) but this increase was proportional to shortening speed, as were the related changes to concentric work/power (range: -15 ± 1 to 39 ± 1 %). In contrast, stimulation did not increase eccentric force, work or power at any frequency. Thus, results reveal a unique hysteresis like effect for the potentiation of dynamic output wherein concentric and eccentric forces increase and decrease, respectively, with work cycle frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to test the hypothesis that the potentiation of dynamic function was dependent upon both length change speed and direction. Mouse EDL was cycled in vitro (250 C) about optimal length (Lo) with constant peak strain (± 2.5% Lo) at 1.5,3.3 and 6.9 Hz before and after a conditioning stimulus. A single pulse was applied during shortening or lengthening and peak dynamic (concentric or eccentric) forces were assessed at Lo. Stimulation increased peak concentric force at all frequencies (range: 19±1 to 30 ± 2%) but this increase was proportional to shortening speed, as were the related changes to concentric work/power (range: -15 ± 1 to 39 ± 1 %). In contrast, stimulation did not increase eccentric force, work or power at any frequency. Thus, results reveal a unique hysteresis like effect for the potentiation of dynamic output wherein concentric and eccentric forces increase and decrease, respectively, with work cycle frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

cell of origin and triggering events for leukaemia are mostly unknown. Here we show that the bone marrow contains a progenitor that expresses renin throughout development and possesses a B-lymphocyte pedigree. This cell requires RBP-J to differentiate. Deletion of RBP-J in these renin-expressing progenitors enriches the precursor B-cell gene programme and constrains lymphocyte differentiation, facilitated by H3K4me3 activating marks in genes that control the pre-B stage. Mutant cells undergo neoplastic transformation, and mice develop a highly penetrant B-cell leukaemia with multi-organ infiltration and early death. These reninexpressing cells appear uniquely vulnerable as other conditional models of RBP-J deletion do not result in leukaemia. The discovery of these unique renin progenitors in the bone marrow and the model of leukaemia described herein may enhance our understanding of normal and neoplastic haematopoiesis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A handmade place card with an illustration of a mouse in a orange and black polka dot dress, sipping from a small glass.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Activated by elevations in myoplasmic calcium concentration, myosin light chain kinase (skMLCK) phosphorylates the regulatory light chains (RLCs) of fast muscle myosin. This covalent modification potentiates force production, but requires an investment of ATP. Our objective was to investigate the effect of RLC phosphorylation on the contractile economy (mechanical output:metabolic input) of fast twitch skeletal muscle. Extensor digitorum longus muscles isolated from Wildtype and skMLCK-/- mice mounted in vitro (25°C) were subjected to repetitive low-frequency stimulation (10Hz,15s) known to cause activation of skMLCK, and staircase potentiation of force. With a 3-fold increase in RLC phosphate content, Wildtype generated 44% more force than skMLCK-/- muscles over the stimulation period (P = .002), without an accompanied increase in energy cost (P = .449). Overall, the contractile economy of Wildtype muscles, with an intact RLC phosphorylation mechanism, was 73% greater than skMLCK /- muscles (P = .043), demonstrating an important physiological function of skMLCK during repetitive contractile activity.