5 resultados para C1966.435

em Brock University, Canada


Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The first part of this thesis studied the capacity of amino acids and enzymes to catalyze the hydrolysis and condensation of tetraethoxysilane and phenyltrimethoxysilane. Selected amino acids were shown to accelerate the hydrolysis and condensation of tetraethoxysilane under ambient temperature, pressure and at neutral pH (pH 7±0.02). The nature of the side chain of the amino acid was important in promoting hydrolysis and condensation. Several proteases were shown to have a capacity to hydrolyze tri- and tet-ra- alkoxysilanes under the same mild reaction conditions. The second part of this thesis employed an immobilized Candida antarctica lipase B (Novozym-435, N435) to produce siloxane-containing polyesters, polyamides, and polyester amides under solvent-free conditions. Enzymatic activity was shown to be temperature dependent, increasing until enzyme denaturation became the dominant pro-cess, which typically occurred between 120-130ᵒC. The residual activity of N435 was, on average, greater than 90%, when used in the synthesis of disiloxane-containing polyesters, regardless of the polymerization temperature except at the very highest temperatures, 140-150ᵒC. A study of the thermal tolerance of N435 determined that, over ten reaction cycles, there was a decrease in the initial rate of polymerization with each consecutive use of the catalyst. No change in the degree of monomer conversion after a 24 hour reaction cycle was found.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Christian Cardell Corbet, a descendant of Guernsey, Channel Islands, was born in 1966 at Pickering Beach on Lake Ontario. He developed his talents as a landscape artist and at the young age of 14 he began his informal education in commercial signage from his paternal grandfather. He studied at the University of Guelph and McMaster University Anatomy Laboratory. Corbet traveled to England where he began to experiment more in abstraction and non-objective work. In 1995, he presented a portrait of HM Queen Elizabeth the Queen Mother at Clarence House. This brought his career to an international level. He also creates two-dimensional works and has received acclaim for his bronze art medallions. He has gained international recognition as a Forensic Artist working as Artist in Residence for the University of Western Ontario. He does facial reconstructions for special assignments. These original drawings relate to a sculpted medallion of Brock which was authorized by Sir Geoffrey Rowland, Bailiff, Guernsey, Channel Islands and Minister of Education of the States of Guernsey. This is the first time in known recorded history that a forensic analysis and sculpture has been created to accurately depict the facial likeness of Sir Isaac Brock. This project has been established to mark the 2012 anniversary of the death of Brock.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Immobilized lipase B from Candida antarctica (Novozym® 435, N435) was utilized as part of a chemoenzymatic strategy for the synthesis of branched polyesters based on a cyclotetrasiloxane core in the absence of solvent. Nuclear magnetic resonance spectroscopy and matrix-assisted laser desorption ionization time-of-flight mass spectrometry were utilized to monitor the reactions between tetraester cyclotetrasiloxanes and aliphatic diols. The enzyme-mediated esterification reactions can achieve 65– 80% consumption of starting materials in 24–48 h. Longer reaction times, 72–96 h, resulted in the formation of cross-linked gel-like networks. Gel permeation chromatography of the polymers indicated that the masses were Mw ¼ 11 400, 13 100, and 19 400 g mol 1 for the substrate pairs of C7D4 ester/ octane-1,8-diol, C10D4 ester/pentane-1,5-diol and C10D4 ester/octane-1,8-diol respectively, after 48 h. Extending the polymerization for an additional 24 h with the C10D4 ester/octane-1,8-diol pair gave Mw ¼ 86 800 g mol 1. To the best of our knowledge this represents the first report using lipase catalysis to produce branched polymers that are built from a cyclotetrasiloxane core.