2 resultados para C-Reactive Protein -- metabolism
em Brock University, Canada
Resumo:
Acute alterations in cell volume can substantively modulate subsequent metabolism of substrates. However, how such alterations in skeletal muscle modulate protein metabolism is limited. The purpose of this study was to determine the time dependent influence of extracellular osmotic stress on protein turnover in skeletal muscle cells. L6 cells were incubated in hyperosmotic (HYPER; 425.3 ± 1.8mmol/kg), hypo-osmotic (HYPO; 235.4 ± 1.0mmol/kg) or control (CON; 333.5 ± 1.4mmol/kg) media for 4, 8, 12, or 24hrs. During the final 4hrs, incorporation of L-[ring-3,5-3H]-tyrosine was measured to estimate protein synthesis. Western blotting measured markers of protein synthesis and degradation. No differences were observed in any outcomes except p70S6K phosphorylation whereby HYPO was lower (p<0.05) than CON and HYPER; which remained similar except for a large increase at 8hrs for HYPER. These findings suggest that regardless of duration, extracellular osmotic stress does not significantly affect protein metabolism in L6 cells.
Resumo:
The purpose of this study was to examine the effects of increased extracellular leucine concentration on protein metabolism in skeletal muscle cells when exposed to 3 different osmotic stresses. L6 skeletal muscle cells were incubated in either a normal or supplemental leucine (1.5mM) medium set to hypo-osmotic (230 ± 10 Osm), iso-osmotic (330 ± 10 Osm) or hyper-osmotic (440 ± 10 Osm) conditions. 3H-tyrosine was used to quantify protein synthesis. Western blotting analysis was performed to determine the activation of mTOR, p70S6k, ubiquitin, actin, and μ-calpain. Hypo-osmotic stress resulted in the greatest increase in protein synthesis rate under the normal-leucine condition while iso-osmotic stress has the greatest increase under the elevated-leucine condition. Elevated-leucine condition had a decreased rate in protein degradation over the normal condition within the ubiquitin proteasome pathway (p<0.05). Leucine and hypo-osmotic stress therefore creates a favourable environment for anabolic events to occur.