6 resultados para Business Administration, General|Business Administration, Marketing|Computer Science
em Brock University, Canada
Resumo:
This exploratory, descriptive action research study is based on a survey of a sample of convenience consisting of 172 college and university marketing students, and 5 professors who were experienced in teaching in an internet based environment. The students that were surveyed were studying e-commerce and international business in 3^^ and 4*'' year classes at a leading imiversity in Ontario and e-commerce in 5^ semester classes at a leading college. These classes were taught using a hybrid teaching style with the contribution of a large website that contained pertinent text and audio material. Hybrid teaching employs web based course materials (some in the form of Learning Objects) to deliver curriculimi material both during the attended lectures and also for students accessing the course web page outside of class hours. The survey was in the form on an online questionnaire. The research questions explored in this study were: 1. What factors influence the students' ability to access and learn from web based course content? 2. How likely are the students to use selected elements of internet based curriculum for learning academic content? 3. What is the preferred physical environment to facilitate learning in a hybrid environment? 4. How effective are selected teaching/learning strategies in a hybrid environment? The findings of this study suggest that students are very interested in being part of the learning process by contributing to a course web site. Specifically, students are interested in audio content being one of the formats of online course material, and have an interest in being part of the creation of small audio clips to be used in class.
Resumo:
The main focus of this thesis is to evaluate and compare Hyperbalilearning algorithm (HBL) to other learning algorithms. In this work HBL is compared to feed forward artificial neural networks using back propagation learning, K-nearest neighbor and 103 algorithms. In order to evaluate the similarity of these algorithms, we carried out three experiments using nine benchmark data sets from UCI machine learning repository. The first experiment compares HBL to other algorithms when sample size of dataset is changing. The second experiment compares HBL to other algorithms when dimensionality of data changes. The last experiment compares HBL to other algorithms according to the level of agreement to data target values. Our observations in general showed, considering classification accuracy as a measure, HBL is performing as good as most ANn variants. Additionally, we also deduced that HBL.:s classification accuracy outperforms 103's and K-nearest neighbour's for the selected data sets.
Resumo:
Relation algebras is one of the state-of-the-art means used by mathematicians and computer scientists for solving very complex problems. As a result, a computer algebra system for relation algebras called RelView has been developed at Kiel University. RelView works within the standard model of relation algebras. On the other hand, relation algebras do have other models which may have different properties. For example, in the standard model we always have L;L=L (the composition of two (heterogeneous) universal relations yields a universal relation). This is not true in some non-standard models. Therefore, any example in RelView will always satisfy this property even though it is not true in general. On the other hand, it has been shown that every relation algebra with relational sums and subobjects can be seen as matrix algebra similar to the correspondence of binary relations between sets and Boolean matrices. The aim of my research is to develop a new system that works with both standard and non-standard models for arbitrary relations using multiple-valued decision diagrams (MDDs). This system will implement relations as matrix algebras. The proposed structure is a library written in C which can be imported by other languages such as Java or Haskell.
Object-Oriented Genetic Programming for the Automatic Inference of Graph Models for Complex Networks
Resumo:
Complex networks are systems of entities that are interconnected through meaningful relationships. The result of the relations between entities forms a structure that has a statistical complexity that is not formed by random chance. In the study of complex networks, many graph models have been proposed to model the behaviours observed. However, constructing graph models manually is tedious and problematic. Many of the models proposed in the literature have been cited as having inaccuracies with respect to the complex networks they represent. However, recently, an approach that automates the inference of graph models was proposed by Bailey [10] The proposed methodology employs genetic programming (GP) to produce graph models that approximate various properties of an exemplary graph of a targeted complex network. However, there is a great deal already known about complex networks, in general, and often specific knowledge is held about the network being modelled. The knowledge, albeit incomplete, is important in constructing a graph model. However it is difficult to incorporate such knowledge using existing GP techniques. Thus, this thesis proposes a novel GP system which can incorporate incomplete expert knowledge that assists in the evolution of a graph model. Inspired by existing graph models, an abstract graph model was developed to serve as an embryo for inferring graph models of some complex networks. The GP system and abstract model were used to reproduce well-known graph models. The results indicated that the system was able to evolve models that produced networks that had structural similarities to the networks generated by the respective target models.
Resumo:
Lattice valued fuzziness is more general than crispness or fuzziness based on the unit interval. In this work, we present a query language for a lattice based fuzzy database. We define a Lattice Fuzzy Structured Query Language (LFSQL) taking its membership values from an arbitrary lattice L. LFSQL can handle, manage and represent crisp values, linear ordered membership degrees and also allows membership degrees from lattices with non-comparable values. This gives richer membership degrees, and hence makes LFSQL more flexible than FSQL or SQL. In order to handle vagueness or imprecise information, every entry into an L-fuzzy database is an L-fuzzy set instead of crisp values. All of this makes LFSQL an ideal query language to handle imprecise data where some factors are non-comparable. After defining the syntax of the language formally, we provide its semantics using L-fuzzy sets and relations. The semantics can be used in future work to investigate concepts such as functional dependencies. Last but not least, we present a parser for LFSQL implemented in Haskell.
Resumo:
The KCube interconnection network was first introduced in 2010 in order to exploit the good characteristics of two well-known interconnection networks, the hypercube and the Kautz graph. KCube links up multiple processors in a communication network with high density for a fixed degree. Since the KCube network is newly proposed, much study is required to demonstrate its potential properties and algorithms that can be designed to solve parallel computation problems. In this thesis we introduce a new methodology to construct the KCube graph. Also, with regard to this new approach, we will prove its Hamiltonicity in the general KC(m; k). Moreover, we will find its connectivity followed by an optimal broadcasting scheme in which a source node containing a message is to communicate it with all other processors. In addition to KCube networks, we have studied a version of the routing problem in the traditional hypercube, investigating this problem: whether there exists a shortest path in a Qn between two nodes 0n and 1n, when the network is experiencing failed components. We first conditionally discuss this problem when there is a constraint on the number of faulty nodes, and subsequently introduce an algorithm to tackle the problem without restrictions on the number of nodes.